Investigation of Chloride Ion Adsorption onto Ti₂C MXene

Monolayers by First-principles Calculations

Dashuai Wang^a, Yu Gao^a, Yanhui Liu^c, Yury Gogotsi^{a,b,*}, Xing Meng^{a,b}, Gang Chen^{a,*}, and Yingjin Wei^{a,*}

- ^aKey Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China. *E-mail: yjwei@jlu.edu.cn (Y. J. Wei); gchen@jlu.edu.cn (G. Chen)
- ^bDepartment of Materials Science & Engineering, and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States. *E-mail: yg36@drexel.edu (Y. Gogotsi)

^cDepartment of Physics, College of Science, Yanbian University, Yanji 133002, China

Supporting Information

Fig. S1. Density of states (DOS) of (a) Ti_2CO_2 , (b) $Ti_2C(OH)_2$, (c) Ti_2CF_2 , and (d) Ti_2CCl_2 monolayers, respectively.

Fig. S2. Side views of (a) Ti_2CO_2 , (b) Ti_2CF_2 , and (a) $Ti_2C(OH)_2$ monolayers.

Fig. S3. Optimized Cl adsorption configurations for (a)–(d) Ti_2CO_2 , (e)–(h) Ti_2CF_2 , and (i)–(l) $Ti_2C(OH)_2$ monolayers. (d), (h), and (l) correspond to the Cl adsorption configurations on Ti_2CT_2 monolayers with one T (T = O, F, or OH, respectively) vacancy.

Fig. S4. (a)Possible Cl⁻ diffusion pathways on a $Ti_2C(OH)_2$ monolayer. (b) Diffusion barrier profiles of Cl⁻ on a $Ti_2C(OH)_2$ monolayer.