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Chemicals 

The following chemicals were obtained as indicated: Zinc nitrate hexahydrate 

(Zn(NO3)2•6H2O, 99.0%, Sigma-Aldrich), 2-methylimidzole (MIM, 99%, Sigma-

Aldrich), Sodium tetrachloroaurate (NaAuCl4, 99.0%, Tianjin Guangfu Company), 

Methanol (Tianjin Guangfu Fine Chemical Research Institute), Tetrabutylammonium 

iodide (TBAI) (Sigma-Aldrich), Acetone and ethanol (absolute for analysis, 99.9%, 

Tianjin Guangfu Fine Chemical Research Institute). All the chemicals are reagent-

grade and used as received. High-purity water (18.25 MΩ·cm) supplied by a UP 

Water Purification System was used in all the experiments.
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Characterization 

Morphology of the samples was characterized with a transmission electron 

microscope (TEM) system (JEOL Model JEM-2100F) operating at 200 kV. The 

crystal phase of samples was investigated using a Bruker D8 Advance diffractometer 

X-ray diffraction (XRD) operating at 40 kV and 40 mA equipped with a nickel-

filtered Cu Kα radiation (λ=1.54056 Å). X-ray photoelectron spectroscopy (XPS) data 

were obtained on a PHI-1600 instrument equipped with Al Kα radiation. Element 

composition was analyzed using a VISTA-MPX EL02115765 inductive coupled 

plasma optical emission spectrometer. The specific surface area was calculated by the 

Brunauer-Emmett-Teller (BET) method using nitrogen adsorption/desorption 

measurement (Quantachrome Instruments, Micrometrics TriStar 3000).

Synthesis of Au/Phen 
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Sodium tetrachloroaurate (65 mg) and 1,10-phenanthroline (Phen) (60 mg) were 

dissolved in 3.0 mL and 1.0 mL of acetone with stirring, respectively. Then the 

sodium tetrachloroaurate solution was added dropwise to the 1,10-phenanthroline 

solution with stirring, forming a yellow precipitate, and the mixture was kept stirring 

for 8 h at room temperature. The precipitate was separated by centrifugation, dried at 

60 ºC under vacuum for 8 h to yield Au/Phen as a yellow solid.

Scheme S1. Synthesis of Au/Phen.
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Figures and Tables

Figure S1. Nitrogen adsorption-desorption isotherms of ZIF-8 (triangles) and Au/Zn-

MOF nanocage (cycles).
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Figure S2. The TEM and HRTEM image of RH Au/Zn-MOF nanocage after etching 

for 18 h (a, b).
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Figure S3. Kinetic profiles of the framework metal ion exchange of Zn2+ with Au3+ 

from ZIF-8 structure.
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Figure S4. XRD patterns of ZIF-8 and RD Au/Zn-MOF nanocage.
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Figure S5. (a) XRD pattern of RH Au/Zn-MOF nanocage and RD Au/Zn-MOF 

nanocage catalyst after being reused for 6 times. (b) TEM image of RH Au/Zn-MOF 

nanocage catalyst after being reused for 6 times. (c) TEM image of RD Au/Zn-MOF 

nanocage catalyst after being reused for 6 times.
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Figure S6. FT-IR spectra of ZIF-8, Au/Zn-MOF nanocage and Au/Zn-MOF nanocage 

catalyst after being reused for 6 times.
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Figure S7. 13C-CP-MAS NMR spectra of activated ZIF-8 and Au/Zn-MOF.
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Figure S8. Energy dispersive spectroscopic for RH Au/Zn-MOF nanocage.
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Figure S9. XPS spectra of (a) Zn LM2 and (b) N 1S that are obtained from ZIF-8 

(black) and Au/Zn-MOF (red).
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Figure S10. Schematic illustrations and corresponding TEM images of a rhombic 

dodecahedron.
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Figure S11. (a) TEM image of an individual RD Au/Zn-MOF nanocage. (b) HAADF-

STEM image of an individual RD Au/Zn-MOF nanocage. (c) cross-sectional 

compositional line profiles of RD Au/Zn-MOF nanocage recorded along the line 

marked in panel b.
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Figure S12. TEM images of the samples obtained at six representative stages during 

the evolution process from polyhedra to nanocage.
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Scheme S2. Proposed mechanism for cycloaddition of epoxides with CO2 catalyzed 

by Au/Zn-MOF.
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Table S1. Comparison with other MOF-based catalytic systems on cycloaddition 

reaction of CO2 to propylene oxide.

Entry MOF catalyst
Pore 

(nm)

Reaction 

conditions

Yields 

(%)

TOF 

(h-1)
Ref.

1 RH Au/Zn-MOF 0.34
r.t., 1 atm, 

24 h
83 2.5

This 

work

2 RH Au/Zn-MOF 0.34
70 °C, 30 

atm, 6 h
98 11.7

This 

work

3 HKUST-1 1

80 °C, 

19.7 atm, 

8 h

5.4 — R1

4 MOF-5 0.4-0.6

80 °C, 

19.7 atm, 

8 h

2.5 — R1

5 PCN 224 (Co) 1.9

100 °C, 

19.7 atm, 

4 h

42 115 R6

6 MOF-505 0.83
r.t., 1 atm, 

48 h
48 — 27

7 MMCF-2 -
r.t., 1 atm, 

48 h
95.4 — 27

8
[Zn6(TATAB)4(DABCO)3(H2O)3]·

12DMF·9H2O
-

100 °C, 1 

atm, 16 h
99 15 R2

9 BIT-103 -
160 °C, 30 

atm, 24 h
95.2 9.6 R3

10 BIT-102 -
160 °C, 30 

atm, 24 h
89.4 9.0 R3

11 BIT-101 - 160 °C, 30 84.7 7.3 R3
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atm, 24 h

12 In2(OH)(btc)(Hbtc)0.4(L)0.6·3H2O -

80 °C, 

19.7 atm, 

4 h

93.9 — R4

13 UMCM-1-NH2 1.7-2.8
r.t., 11.8 

atm, 24 h
90 — R5

14 MIL-101-N-(n-Bu)3Br 1.3-2.7

80 °C, 

19.7 atm, 

8 h

98.6 — R1

15 MIL-101-P(n-Bu)3Br -

80 °C, 

19.7 atm, 

8 h

99.1 — R1



S22

Supporting references

R1. D. Ma, B. Li, K. Liu, X. Zhang, W. Zou, Y. Yang, G. Li, Z. Shi, S. Feng, J. Mater. Chem. A 

2015, 3, 23136.

R2. Y. H. Han, Z. Y. Zhou, C. B. Tian, S. W. Du, Green Chem. 2016, 18, 4086.
R3. X. Huang, Y. Chen, Z. Lin, X. Ren, Y. Song, Z. Xu, X. Dong, X. Li, C. Hu, B. Wang, Chem. 

Commun. 2014, 50, 2624.

R4. L. Liu, S.-M. Wang, Z.-B. Han, M.-L. Ding, D.-Q. Yuan, H.-L. Jiang, Inorg. Chem. 2016, 55, 

3558.

R5. R. Babu, A. C. Kathalikkattil, R. Roshan, J. Tharun, D. −W. Kim, D. −W. Park, Green Chem. 

2016, 18, 232.

R6. D. Feng, W.-C. Chung, Z. Wei, Z.-Y. Gu, H.-L. Jiang, Y.-P. Chen, D. J. Darensbourg, H.-C. 

Zhou, J. Am. Chem. Soc. 2013, 135, 17105.


