Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supporting Information (ESI)

CoS₂-TiO₂ Hybrid Nanostructures: Efficient and Durable Oxygen Evolution Catalysts for the Alkaline Electrolyte Membrane Water Electrolyzers

Pandian Ganesan, Arumugam Sivanantham and Sangaraju Shanmugam*

Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 50-1 Sang-Ri, Hyeongpung-Myeon, Dalseong-gun, Daegu, 42988, Republic of Korea. E-mail: <u>sangarajus@dgist.ac.kr</u>; Tel: +82-53-785-6413.

Calculation of lattice parameter

d-spacing calculated from Bragg's equation,

 $n\lambda = 2dsin\theta$

Where λ , θ and d are wave length of X-ray, angle of diffraction and d is the distance between the two consecutive planes.

In case of the cubic symmetry,

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

But, in case of the cubic symmetry,

$$\frac{1}{d^2} = \frac{h^2 + k^2}{a^{\prime 2}} + \frac{1}{c^2}$$

Where h, k and l are lattice planes, a, a' and b are lattice parameter in Å.

Calculations of Thermal Gravimetric Analysis (TGA)

TGA of the pure CoS_2 prepared from the cobalt thiourea complex exhibits 82% loss. Hence, 18% of CoS_2 were not completely decomposed. Also, pure TiO_2 exhibits the weight loss of 6.7%. Hence,

Weight loss due to only CoS_2 in each samples =	Total weight loss		TiO ₂
	of the composite	—	weight loss

Then, remaining % of $CoS_2 = \frac{18}{81} * CoS_2$ weight loss in each composites

Hence, total % of CoS_2 = Remaining % of CoS_2 + Weight lost by CoS_2 only

Band gap from the UV-visible spectroscopy

The band gap of the UV-visible spectra in the Figure 6 can be calculated by plotting the $(\alpha h \upsilon)^2$ in the y-axis and band gap calculated E_g from the incident wavelength for each material.

Where is the absorption coefficient, h is Planck's constant, v is frequency of the wavelength. Is calculated using the relationship

$$A = \frac{2.303 * A}{t}$$

where A is absorbance, t is the thickness of the sample.

Fig. S1 TGA of CST-1, CST-2, CST-3, CST-4, CST-5, CST-6, CoS_2 and TiO_2 .

Fig. S2 SEM images: low and high magnification images of CST-1 (a &b), CST-2 (c &d), CST-3 (e &f), CST-4 (g &h), CST-5 (i &j) and CST-6 (k &l).

Fig S3: (a) Low and (b) high magnification images of pristine TiO_{2} .

Fig. S4 TEM elemental mapping analysis of CST-3 (a) Selected area and corresponding elemental mapping for (b) Titanium (c) Cobalt, (d) sulfur, (e) oxygen and (f) combined elements.

Fig. S5 TEM elemental mapping analysis of CST-5 (a) Selected area and corresponding elemental mapping for (b) Titanium (c) Cobalt, (d) sulfur, (e) oxygen and (f) combined elements.

Fig. S6 (a) The XPS spectra of CoS_2 , CST-1, CST-2, CST-3, CST-4, CST-5 and CST-6 in the S2p region. (b) The XPS spectra of TiO₂, CST-1, CST-2, CST-3, CST-4, CST-5 and CST-6 in the Ti2p region.

Fig. S7 (a) The OER polarization curves of TiO_2 , CoS_2 , CST-1, CST-2, CST-4 and CST-6 and (b) and the HER polarization curves of TiO_2 , CoS_2 , CST-1, CST-2, CST-4 and CST-6 in 1 M KOH at the 10 mV s⁻¹ scan rate.

Fig. S8 (a) The OER mass activities of TiO_2 , CoS_2 , CST-3, CST-5 and RuO_2 . (b) The HER mass activities of TiO_2 , CoS_2 , CST-3, CST-5 and Pt/C.

Fig. S9 (a) The OER cyclic voltammetric (CV) stability test of CST-3 catalysts. (b) The corresponding OER linear sweep voltammetry of CST-3 before stability test and after 1000 cycles of the CV test. (c) The HER cyclic voltammetric (CV) stability test of CST-5 catalysts. (d) The corresponding HER linear sweep voltammetry of CST-5 before stability test and after 800 cycles of the CV test.

Fig. S10 Post XPS analysis (Co2p and S2p) and comparison of CST-3 catalyst: (a,b) fresh catalyst and (c,d) after 1000 cycles of OER durability test.

Fig. S11 Post XPS analysis (Ti2p and O1s) and comparison of CST-3 catalyst: (a,b) fresh catalyst and (c,d) after 1000 cycles of OER durability test.

Fig. S12 Electrochemical band gap of the TiO₂, CST-1, CST-2, CST-3, CST-4, CST-5, CST-6 and CoS₂ electrodes.

Fig. S13 (a) The cell voltage versus current density of the AEM constructed with the CST- $5//AEM//RuO_2$ and Pt/C//AEM//RuO₂. (b) The corresponding chronopotentiometric durability of CST- $5//AEM//RuO_2$ at 50 mA cm⁻².

Fig. S14. (a) The cell voltage versus current density of the AEM constructed with the CST-5//AEM//CST-3. (b) The corresponding chronopotentiometric durability of CST-5//AEM//CST-3 at 100 mA cm⁻².

Calibration of Hg/HGO electrode to RHE (reversible hydrogen electrode).

We have calibrated the Hg/HgO electrode with respect to the reversible hydrogen electrode (RHE) at high purity hydrogen saturated 1 M KOH with the Pt wire as the working electrode. The cyclic voltammetry was carried out and the average of the two potentials (1.022 and 0.98 V) at which the current crossed zero was taken to be the thermodynamic potential (1.001 V) (**Fig. S9**).

Fig. S15 The calibration curve of the Hg/HgO electrode for the conversion of reversible hydrogen electrode (RHE).

Fig. S16 The electrochemical impedance spectra (EIS) in 1 M KOH using the glassy carbon electrode.

Catalysts	Cell parameter CoS ₂ (Cubic symmetry)	Cell parameter TiO ₂ (Tetragonal symmetry) a' (Å) b(Å)		
	a (Å)	a' (Å)	b(Å)	
TiO ₂	_	3.7872	9.6140	
CoS ₂	5.5530	-	-	
CST-1	5.5502	3.8042	9.6140	
CST-2	5.5436	3.8042	9.6140	
CST-3	5.5430	3.8040	9.6140	
CST-4	5.5412	3.8040	9.6140	
CST-5	5.5404	3.8036	9.6140	
CST-6	5.5376	3.8030	9.6140	

Table S1. The measured cell parameter from XRD pattern for various CoS_2 -TiO₂ hybrids and ratios of CoS_2 and TiO₂ from TGA.

Catalysts	Total weight loss of the composite $(CoS_2 + TiO_2)$ (%)	Weight loss due to only CoS ₂ (%)	Remaining % of CoS ₂	Total amount of CoS ₂ (%)	Total amount of TiO ₂ (%)
CST-1	27	20.3	6.4611	27	73
CST-2	30	23.3	7.179	31	69
CST-3	32	25.3	7.6576	33	67
CST-4	34	27.3	8.1362	35	65
CST-5	39	32.3	9.3327	42	58
CST-6	43	36.3	10.2899	47	53

Table S2. Calculation of CoS_2 and TiO_2 ratio using the TGA results.

	OER		
Catalysts	$ TOF @ 1.50 V x 10^{-3} (s^{-1}) $	Mass activity @ 1.50 V (mA mg ⁻¹)	
CoS ₂	0.1	0.13	
CST-3	5.2	3.76	
CST-5	3.3	1.19	
RuO	1.2	2.76	

Table S3. OER mass activities (MA) and turn over frequencies (TOF) of various catalysts.

Catalysts	OER	References		
·	Overpotential η (mV) @10 mA cm ⁻²			
CST-3	231	This work		
Ni ₃ S ₂ /NF	260	J. Am. Chem. Soc., 2015, 137 , 14023.		
CoSe/Ti mesh	341	<i>Chem. Commun.</i> , 2015, 51 , 16683.		
Ni ₃ Se ₂ -Ni foam	270	Energy Environ. Sci., 2016, 9, 1771.		
AgCuZn-S	361	ACS. Appl. Mater. Interfaces, 2015, 7 , 17112.		
CoTe ₂ /CNT	239	J. Phys. Chem. C, 2016, 120 , 28093.		
Co ₉ S ₈ microplates	278	ACS Appl. Mater. Interfaces, 2017, 9 , 11634.		
ECT-CoO	346	ACS Cent. Sci., 2015, 1, 244.		
Co ₉ S ₈ /CNS	394	J. Mater. Chem. A, 2016, 4 , 18314.		
ECT-Se-Co _{0.5} Fe _{0.5} O	243	Nano Lett., 2016, 16, 7588.		
Co@CoO/NG	315	J. Mater. Chem. A, 2016, 4 , 12046		
Co _{1-x} Fe _x S@N-MC	410	ACS Appl. Mater. Interfaces, 2015, 7, 1207.		
$Ni_{\alpha}Co_{3-\alpha}O_4$ nanowires	337	ACS Appl. Mater. Interfaces 2016, 8 , 3208.		

Table S4. Comparison of OER activities with recent non-precious catalysts in 1 M KOH.

Catalysts –	HER Overpotential η (mV) @ -10 mA cm ⁻²	— References
CST-5	200	This work
Ni ₃ S ₂ /NF	223	J. Am. Chem. Soc., 2015, 137 , 14023.
MoS_x	540	Chem. Commun., 2015, 51 , 16683.
CoP/CC	209	J. Am. Chem. Soc., 2014, 136 ,7587
β-NiS NCs	250	<i>RSC Adv.</i> , 2015, 5 , 104740.
Ni-S/FTO	330	J. Mater. Chem. A, 2014, 2 , 19407.
Ni ₃ S ₂	335	<i>Catal. Sci. Technol.</i> , 2016, 6 , 1077.
NiTe ₂	256	Nanoscale, 2017, 9, 5538.
Co ₉ S ₈ @NPC-10	261	RSC Adv., 2017, 7, 19181.
Cox@CN	232	J. Am. Chem. Soc., 2015, 137 , 2688.
Co-Ni-G	330	<i>RSC Adv.</i> , 2015, 5 , 47398.
Co embedded Nickel on carbon	249	J. Mater. Chem. A, 2016, 4 , 12818.

Table S5. Comparison of HER activities with recent non-precious catalysts in 1 M KOH.

Catalysts	Optical Band gap (E _g) eV	C ₁ V vs. RHE	A ₁ V vs. RHE	Electrochemical Band gap (E _g) eV
TiO ₂	3.08	-1.27	1.45	2.72
CST-1	2.85	-1.23	1.37	2.60
CST-2	2.80	-1.28	1.39	2.67
CST-3	2.60	-1.20	1.29	2.53
CST-4	2.44	-1.27	1.35	2.62
CST-5	2.52	-1.21	1.34	2.51
CST-6	2.91	-1.16	1.32	2.48
CoS ₂	2.76	-1.37	1.40	2.77

Table S6. The optical and electrochemical band gap values of various CoS_2 -TiO₂ hybrids.