Supporting Information for Journal of Materials Chemistry A

Graphene Coupled Ti₃C₂ MXenes-Derived TiO₂ Mesostructure: Promising Sodium-ion Capacitor Anode with Fast Ion Storage and Long-Term Cycling

Rutao Wang,^a Shijie Wang,^a Yabin Zhang,^a Dongdong Jin,^a Xinyong Tao,^b Li

Zhang*a

^aDepartment of Mechanical and Automation Engineering, The Chinese University of

Hong Kong, Shatin NT, Hong Kong SAR 999077, P. R. China.

^bCollege of Materials Science and Engineering, Zhejiang University of Technology,

Hangzhou 310014, P. R. China.

*Email: lizhang@mae.cuhk.edu.hk

Fig. S1 Optical images showing the violently oxidized process of MXenes-Ti₃C₂ with $30 \text{ wt\% H}_2\text{O}_2$.

Fig. S2 Optical images showing the reaction process of MXenes- Ti_3C_2 with H_2O_2 with the different concentrations.

Fig. S3 Optical images showing Ti-peroxo complex gels obtained by the oxidation of H_2O_2 with different concentrations: (a1) and (a2)-1 wt% H_2O_2 , (b1) and (b2)-3 wt% H_2O_2 , (c1) and (c2)-6 wt% H_2O_2 , (d1) and (d2)-15 wt% H_2O_2 , (e1) and (e2)-30 wt% H_2O_2 . All the gels in the glass bottles can be inverted. Some unreacted raw materials are observed at the bottom of the gels, as the dilute H_2O_2 was used.

Fig. S4 (a) Optical image and (b) XRD pattern of freeze-dried Ti-peroxo complex gel (from 30 wt% H₂O₂).

Fig. S5 (a) UV-vis spectrum, (b) XRD pattern, (c) and (d) TEM images of Ti-peroxo complex after aged for two months.

Fig. S6 Optical images for (left) Ti-peroxo complex-GO and (right) M-TiO₂-RGO samples.

Fig. S7 (a) SEM and (b) HRTEM image of M-TiO₂-RGO. Blue arrows show mesoporous structure in M-TiO₂-RGO.

Fig. S8 EDS spectrum of M-TiO₂.

Fig. S9 TGA curves of M-TiO₂ and M-TiO₂-RGO samples in air with an elevated temperature rate of 10° min⁻¹. The weight loss of M-TiO₂ might be related to the decomposition and oxidation of the residual carbon in air atmosphere. Assuming M-TiO₂ with and without RGO experiences the same weight loss, the content of M-TiO₂ in M-TiO₂-RGO can be calculated as 73.7/98.4=74.9 wt%. The weight retention value here is obtained at 700 °C. As we know, RGO can be completely decomposed at 700 °C in air. Then the percentage of RGO in M-TiO₂-RGO is (100-74.9) wt%=25.1 wt%.

Fig. S10 (a) Full and (b) C1s XPS spectrum of MXenes-Ti₃C₂, M-TiO₂, and M-TiO₂-RGO samples.

Fig. S11 Rate capability of Ti_3C_2 MXenes and M-TiO₂ at various current densities ranging from 50 to 2000 mA g⁻¹.

Fig. S12 CV curves from 10 to 100 mV s⁻¹ of M-TiO₂-RGO electrode.

Fig. S13 Contribution ratio of the capacitive and diffusion-controlled charge versus scan rate of M-TiO₂-RGO electrode.

Fig. S14 (a) Galvanostatic charge-discharge curves (current density of 0.5 A g⁻¹) of M-TiO₂-RGO//PDPC SIC measured at different anode/cathode mass ratios. (b) Ragone plot (power density *vs.* energy density) of this M-TiO₂-RGO//PDPC SIC with different anode/cathode mass ratios.