Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Vertically Oriented Growth of MoO₃ Nanosheets on Graphene for Superior Lithium Storage

Shuai Wang, a Huijuan Zhang, a Di Zhang, a Yang Ma, a Xiaofang Bi, *a and Shubin Yang*a

^a Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education,

School of Materials Science & Engineering

Beihang University

Beijing, 100191, China

* Corresponding author.

E-mail: bixf@buaa.edu.cn ; yangshubin@buaa.edu.cn

Fig. S1. XRD patterns of VOMT-G-X, (X=0, 30, 60, 90 and 120 min), showing the crystallization process of VOMT-G-X hybrid during annealing treatment.

Fig. S2. (a) High-resolution O1s XPS spectra of VOMT-G-0 (without annealing treatment). (b) High-resolution O1s XPS spectra of VOMT-G-90. High-resolution Mo3d XPS spectra of (c) VOMT-G-30 and (d) VOMT-G-60.

Fig. S3. (a) Charge and discharge curves of GO annealed at 400 °C for 90 min at 100 mA g⁻¹. (b) Charge and discharge curves of VOMT-G-90 annealed at 600 °C, at 100 mA g⁻¹. (c) Charge and discharge curves of VOMT-G-90 at 100 mA g⁻¹ and (d) rate capacities of VOMT-G-X (X=30, 60, 90 and 120 min), measured at various rates from 50 to 10000 mA g⁻¹.

Fig. S4. Thermogravimetric Analysis (TGA) of VOMT-G-X (X=30, 60, 90 and 120 min)

TABLE S1. Comparison of electrochemical performance between VOMT-G-90 (our work) which has removed the capacity contribution of graphene and other previous works about MoO₃ anodes in lithium ion batteries.

	Specific Capacity	Current density	Cycling times
	(mAh g ⁻¹)	(mA g ⁻¹)	Cycling times
VOMT-G-90	1429.6	50	30
(the current work)			
Binder-free MoO ₃	880	100	20
nanobelts (Ref.26)			
Porous MoO ₃ film	803	70	50
(Ref.40)			
Hexagonal MoO ₃			
nanorods	780	150	150
(Ref.41)			
MoO3 Nanowire	712.2	500	100
(Ref.35)	712.2	500	100
Lamellar α-MoO ₃	1027		50
(Ref.37)	1027	0.2 C	50
MoO ₃ nanoparticles	630	0.5 C	150
(Ref.42)			

The capacity contribution of graphene in VOMT-G-90 is calculated by the following equation as: Capacity contribution of graphene = Capacity of graphene X Weight percentage of graphene. After subtraction the capacity contribution of graphene from the total capacity, the capacity of MoO3 in VOMT-G-90 was calculated to 1429.6 mAh g-1.

TABLE S2. Comparison of electrochemical performance between VOMT-G-90 (our work) and other previous works about MoO₃/graphene anodes in lithium ion batteries.

	Specific Capacity	Current density	
	(mAh g ⁻¹)	(mA g ⁻¹)	Cycling times
VOMT-G-90			
(the current work)	1429.6	50	30
In situ synthesis of α -			
MoO3/graphene	977.7	50	1
composites (Ref.38)			
MoO3-Reduced			
Graphene Oxide	1115	500	100
Powders (Ref.16)			
Reduced Graphene			
Oxide-Wrapped	770.0	1.50	20
MoO3 Composites	/ /9.9	150	30
(Ref.15)			

Fig. S5. SEM image of VOMT-G-90 after long term cycling.

Fig. S6. Cyclic voltammogram (CV) curves of VOMT-G-90 in a half cell at a scan rate of 0.1 mV s⁻¹ ranged in 0.01–3.0 V vs. Li/Li⁺.

Fig. S7. Nyquist plots of VOMT-G-X, (X=30, 60, 90, and 120 min) after rate cycles.

Fig. S8. Equivalent circuit model for EIS analysis.

 Table S3. Simulation results of the kinetic parameters of VOMT-G-X. (X=30, 60, 90 and 120 min)

 for lithium storage.

Sample	$R_{\rm e}(\Omega)$	$R_{ m f}(\Omega)$	$R_{\rm ct}(\Omega)$
VOMT-G-30	3.8	12.33	54.31
VOMT-G-60	4.2	13.98	41.8
VOMT-G-90	3.8	10.1	38.32
VOMT-G-120	3.2	13.11	66.57

Fig. S9. SEM images of (a) VOMT-G-30, (b) VOMT-G-60, (c) VOMT-G-90, and (d) VOMT-G-

120. The insert in (c) shows an optical graph of VOMT-G-90 film.

Fig. S10 SEM images of VOMT-G-120 (a) a number of MoO₃ nanoflakes can be seen even at a very low magnification at 5K, showing its large size, and it was indicated by the red circles. And (b) demonstrating the proportion of the overgrowth MoO₃ nanoflakes. (c) High resolution SEM image of VOMT-G-120, revealing the vertically oriented MoO₃ nanosheets still exist. (d) TEM images of VOMT-G-120, showing some overgrowth MoO₃ nanosheets.