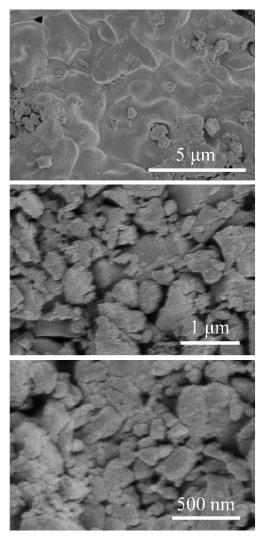
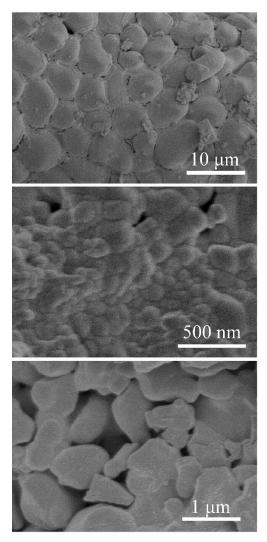
Supplementary Information


PHASE-PURE BiFeO₃ PRODUCED by REACTION FLASH-SINTERING of Bi₂O₃ and Fe₂O₃

Eva Gil-González,^a Antonio Perejón,^{a,b} Pedro E. Sánchez-Jiménez,^a María J. Sayagués,^a Rishi Raj,^c Luis A. Pérez-Maqueda^{a,*}


^aInstituto de Ciencia de Materiales de Sevilla (C.S.I.C.-Univ. Sevilla). C. Américo Vespucio 49, Sevilla 41092. Spain

^bDepartamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, Sevilla 41071, Spain

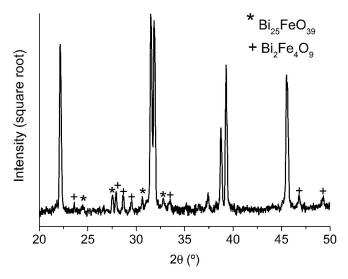

^cMaterials Science and Engineering Program, Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309-0427, USA

Figure S1. SEM micrographs of different areas of the cross section of the sample synthesized by reaction flash sintering at 100 V cm⁻¹ and a current limit of 35 mA mm⁻².

Figure S2. SEM micrographs of different areas of the cross section of the sample synthesized by reaction flash sintering at 50 V cm⁻¹ and a current limit of 50 mA mm⁻².

Figure S3. X-ray diffraction pattern of a BiFeO₃ sample prepared by conventional solid-state reaction. The intensity is represented in square root in order to make the secondary phases more noticeable.

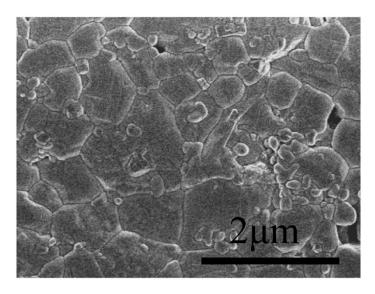


Figure S4. SEM micrograph of a BiFeO₃ sample prepared by conventional solid-state reaction.