Supplementary Information

Biotemplating: A Sustainable Synthetic Methodology for Naion Battery Materials

Silvija Zilinskaite,^a Anthony J. R. Rennie,^b Rebecca Boston,*a Nik Reeves-McLaren*a

Table S1. Surface areas and pore volumes derived from nitrogen adsorption isotherms (at 77K)

Calcination		Physical properties				
Temp. / °C	Time / h	S_{BET}^a/m^2g^{-1}	$S_{meso}^{b} / m^2 g^{-1}$	V _t ^c / cm ³ g ⁻¹	V _{mic} ^d / cm ³ g ⁻¹	V _{meso} ^e / cm ³ g ⁻¹
550	2	108.0	37.8	0.1358	0.0077	0.0559
	5	127.7	45.4	0.1643	0.0888	0.0669
	12	52.9	20.5	0.0970	0.0296	0.0382
650	2	38.6	14.6	0.0535	0.0233	0.0210
	5	36.9	12.7	0.0377	0.0242	0.0158
	12	33.3	11.9	0.0297	0.0233	0.0135
750	2	38.4	11.9	0.0280	0.0350	0.0113
	5	27.4	8.0	0.0152	0.0326	0.0063
	12	31.6	9.2	0.0190	0.0317	0.0078
850	2	33.8	10.7	0.0212	0.0340	0.0094
	5	33.8	5.1	0.0231	0.0264	0.0689
	12	29.3	9.6	0.0182	0.0235	0.0084
Solid state		21.5	7.4	0.0138	0.0248	0.0065

^aspecific surface area calculated using the BET method ^bmesopore surface area determined using BJH method

^aDepartment of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK.

^bDepartment of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK.

^ctotal pore volume calculated at P/P₀>0.99 ^dmicropore volume determined using the Dubinin Astakhov method

^emesopore volume determined using BJH method

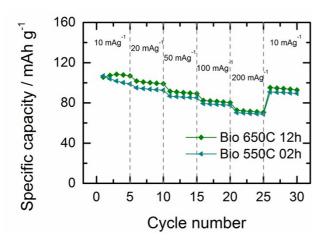


Figure S1. Specific discharge capacities of biotemplated $Na_{2/3}Ni_{1/3}Mn_{2/3}O_2$ calcined at 650 °C for 12 h, and 550 °C 2h at rates between 10 mAg⁻¹ and 200 mAg⁻¹.

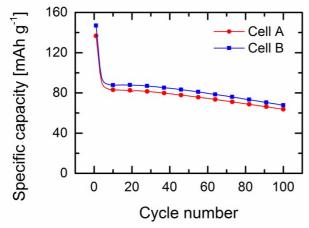


Figure S2. Extended cycling behaviour for two cells containing biotemplated Na $_{2/3}$ Ni $_{1/3}$ Mn $_{2/3}$ O $_2$ calcined at 850 °C for 12 h, at a rate of 10 mAg $^{\text{-}1}$.

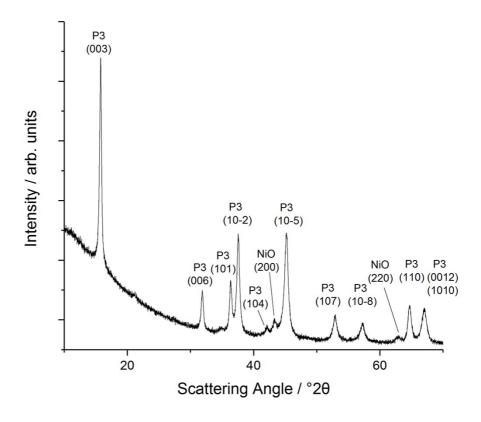


Figure S3a – Indexed diffraction pattern for biotemplated Na $_{2/3}$ Ni $_{1/3}$ Mn $_{2/3}O_2$ calcined at 550 °C for 12 h

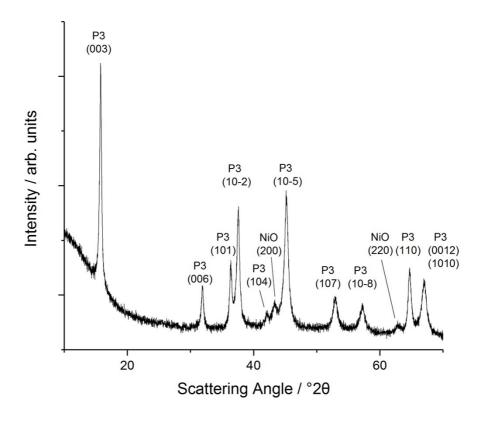


Figure S3b – Indexed diffraction pattern for biotemplated Na $_{2/3}$ Ni $_{1/3}$ Mn $_{2/3}O_2$ calcined at 650 °C for 2 h

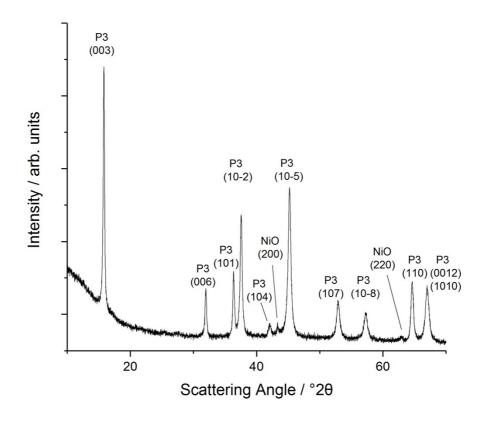


Figure S3c – Indexed diffraction pattern for biotemplated Na $_{2/3}$ Ni $_{1/3}$ Mn $_{2/3}O_2$ calcined at 650 °C for 5 h

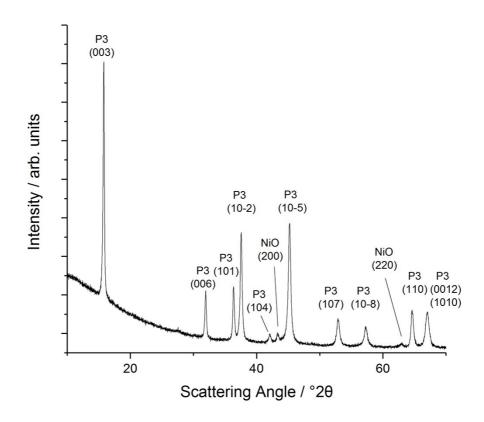


Figure S3d – Indexed diffraction pattern for biotemplated Na $_{2/3}$ Ni $_{1/3}$ Mn $_{2/3}O_2$ calcined at 650 °C for 12 h

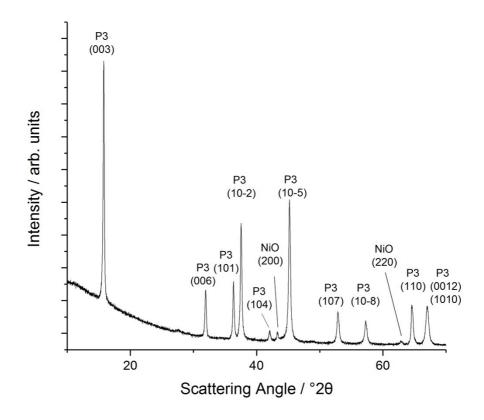


Figure S3e – Indexed diffraction pattern for biotemplated Na $_{2/3}$ Ni $_{1/3}Mn_{2/3}O_2$ calcined at 750 °C for 12 h

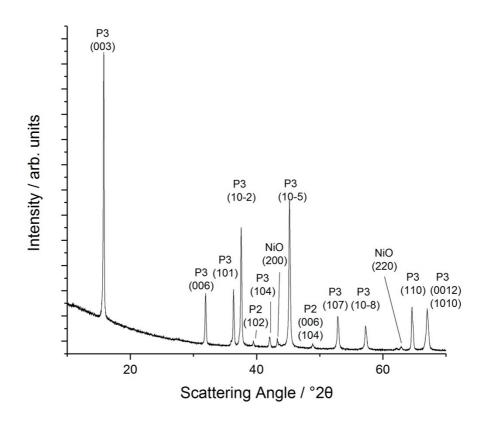


Figure S3f – Indexed diffraction pattern for biotemplated Na $_{2/3}$ Ni $_{1/3}Mn_{2/3}O_2$ calcined at 850 °C for 12 h

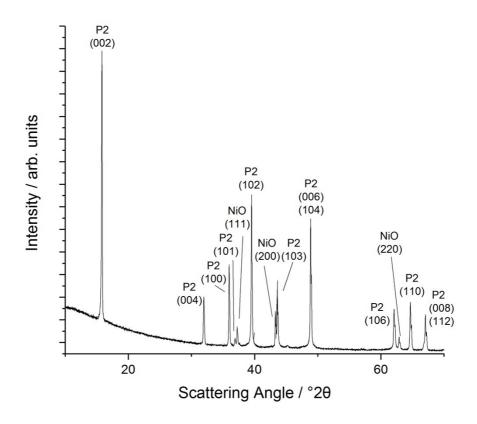


Figure S3g – Indexed diffraction pattern for $Na_{2/3}Ni_{1/3}Mn_{2/3}O_2$ made via solid state reaction, calcined at 850 °C for 12 h