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Supplementary Table

Table S1. lonic conductivities of electrolytes combining 0.4 M PhMgCI solution with 0 M, 0.1 M, 0.2 M, 0.3 M and
0.4 M of AMPyrrCl in THF, termed as PMC, (PMC)(AMPC)o.25, (PMC)(AMPC)o5s, (PMC)(AMPC)o.75 and
(PMC)(AMPC)1,, respectively.

lonic conductivity

Electrolyte (S em-Y
0.4 M PhMgCI 0.17
(PMC)(AMPC)o.2s 0.60
(PMC)(AMPC)os 0.61
(PMC)(AMPC)o.75 0.48

(PMC)(AMPC)1,0 0.23




Supplementary Figures
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Fig. SI. Characteristics of Mg deposition-stripping reaction for the various electrolytes investigated. a) The
chronopotentiograms of the 10™ cycle for Mg deposition-stripping and b) the calculated cycling efficiency up to 50
cycles for the electrolytes of 0.4 M PhMgCI solutions combined with i) 0 M, ii) 0.2 M, and iii) 0.4 M of AMPyrrCI
in THF. The galvanostatic Mg deposition-stripping was conducted with Ni as the working electrode at a current
density of 0.135 mA cm2. The coulombic efficiency of the electrolytes reached more than 99.5 % for all electrolytes
after 50 cycles.
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Fig. S2. Identification of the deposit from an equimolar solution (0.4 M) of PhMgCl and AMPyrrCl in THF.
a) XRD pattern and b) EDS elemental analysis for the deposit on a Ni substrate. From these data, pure Mg metal was
established to be a single dominant deposit from the electrolyte. A small amount of oxygen (~5 %) in the EDS
spectrum originates from the metal oxide layer generated following exposure to air during the analysis.



Fig. S3. SEM images showing the morphological features of Mg deposits in the electrolytes containing a)
pure 0.4 M PhMgCl, b) (PMC)(AMPC)os, c¢) (PMC)(AMPC)os, d) (PMC)(AMPC)o7s, and e)
(PMC)(AMPC)10 after the 1%t deposition. All the deposits were obtained on Ni substrates at the total charge of
4.86 C cm(0.135 mA cm?, 10 h). Round and grain-like morphology was observed regardless of the electrolytes
and no dendrite was observed for all cases considered.
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Fig. S4. Comparison in the oxidative stability of the various electrolytes. Linear sweep voltammograms of i)
pure 0.4 M PhMgCl and 0.4 M PhMgCI solutions with ii) 0.2 M of AICI; (APC solution) and iii) 0.4 M of AMPyrrClI
in THF. All experiments were conducted with a Ni working electrode and Mg counter/reference electrodes at a scan
rate of 25 mV s1. Oxidative stability of the Grignard reagents increases dramatically by adding AICI; or AMPyrrClI
up to ~2.9 V vs. Mg/Mg?*.
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Fig. S5. The entire *H NMR spectra (600 MHz, THF-ds, 25 °C) of a) PhMgCl, b) AMPyrrCl, and the
PhMgCI-AMPyrrCIl complex with ¢) 2:1 and d) 1:1 molar ratio. The spectra were enlarged in Fig. 4, 5 and in
supplementary Fig. S6 to investigate the reaction between PhMgCl and AMPyrrCI.
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Fig. S6. The enlarged *H NMR spectrum (600 MHz, THF-ds, 25 °C) of (i) 2:1 and (ii) 1:1 molar ratio of the
PhMgCI-AMPyrrCI complex in the range of 1.5~4 ppm.
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Fig. S7. Plausible reaction mechanism for Hofmann elimination of AMPyrrCl by Grignard reagent. The
plausible reaction mechanism predicts the formation of tertiary amine, allyl-homoallyl-methylamine. However, we
could not observe *H peaks corresponding to individual allyl and homoallyl group in *H NMR spectrum, but just one

allylic *H pattern was observed.



Fig. S8. The molecular structure of N -butyl-N-methylpyrrolidinium chloride (BMPyrrCl).



<))
(on

0.1
o 2r —_i
= 0.0 — I
S — i :(’
1S IS
~ l_ - ~
2 2
3 ]
© ©
— oF u —
G o
5 S
3} 3
a1k i
1 1 1 1 0.0 1 I 1 1
08 04 00 0.4 0.8 12 00 04 08 12 1.6 2.0 24 28 3.2
Potential / V vs. Mg/Mg*" Potential / V vs. Mg/Mg**

Fig. S9. a) Cyclic voltammograms (5% cycle) and b) linear sweep voltammograms for a series of electrolytes
combining 0.4 M of EtMgCI with i) 0 M, ii) 0.1 M and iii) 0.2 M of AMPyrrCI. Inset in a) shows an enlarged
picture near the onset of Mg deposition marked with an orange square. All experiments were conducted with a Ni
working electrode and Mg counter/reference electrodes at a scan rate of 1 mV s* for CV and 25 mV s! for LSV.
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Fig. S10. *H NMR spectra (600 MHz, THF-ds, 25 °C) of (i) AMPyrrCl, (ii) 2:1 molar ratio of EtMgClI-

AMPyrrCl, and (iii) EtMgCl in THF.
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Fig. S11. Proposed reaction mechanism between AMPyrrCl and EtMgCI in THF.




