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Synthesis of Mn-confined CoOOH nanosheets.

The Mn-confined CoOOH nanosheets were synthesized by a two-step method. 

First, 0.8 mmolCoCl2∙6H2O were dissolved into 40 ml ethylene glycol and deionized 

water mixture. Followed by being bubbled by N2for 1 h, the solution was adjusted to 

be alkaline by adding 5 M ammonia. The solution was then was mixed with prepared 

Manganese chloride solutions. The mixed solution were then transferred to aTeflon-

lined stainless autoclave and heated at 130 ºC for 20 h. The obtained 

precursorCo(OH)2 were collected by centrifugation, washed with ethanol, then 

ultrasonic dispersed in deionized water again, and then 0.5 M NaClO solution was 

dropped in at 50 ºC under vigorous stirring for oxidation treatment. Finally, the 

precipitate was washed with water and then was ultrasonic treated to exfoliate the 

products into nanosheets. For comparison purpose, the pure CoOOH nanosheets were 

also prepared without Manganese chloride solutions. The IrO2 and MnO2 was 

commercial product obtained from Alfa Aesar.

Morphology and structure characterizations. TEM, HRTEM and EDS were 

performed by using a JEOL-2010 TEM with an acceleration voltage of 200 kV. XPS 

were acquired on Thermo ESCALAB 250 with Al Kα (hν = 1486.6 eV) as the 

excitation source. The XAFS data were collected at BL14W1 station in Shanghai 

Synchrotron Radiation Facility and 1W1B station in Beijing Synchrotron Radiation 
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Facility. The O k-edge was measured at BL12B-a beamline of National Synchrotron 

Radiation Laboratory in the total electron yield mode under a vacuum better than 5 × 

10-6 Pa. The beam from the bending magnet was monochromatized utilizing a varied 

line-spacing plane grating and refocused by a toroidal mirror.

Electrochemical characterization. Electrochemical measurements were performed 

using an electrochemical workstation (Model CHI760D, CH instruments, Inc., Austin, 

TX) with a three-electrode system, operated with the modified glassy carbon disk 

electrode as working electrode, platinum mesh as the counter electrode, and saturated 

Ag/AgCl as reference electrode in 1M KOH electrolyte. The Linear Sweep 

Voltammetry (LSV) curves were measured at a rate of 1 mV/s without IR correction 

after dozens of cyclic voltammetric scans until stable. Electrochemical impedance 

spectroscopy (EIS) was recorded with frequency range of 0.1–1000 kHz at a bias 

potential of 1.6 V vs RHE. To avoid Faradaic region, the electrochemical double layer 

capacitance (Cdl) was measured at a range of 1.0–1.1Vvs RHE at rate ranging from 10 

to 100 mV/s withinterval 10 mVincrement.

For electrode preparation, 2mg of fresh prepared Mn-confined CoOOH 

nanosheets, was dispersed in 1ml of 3:1 (v/v) DI-water/ethanol mixture solvent under 

ultrasonic water bath for about 30min. After that, an amount of carbon black and 20µl 

Nafion solution (5 wt%, Sigma-Aldrich) was added, and the mingled solution was 

sonicated in an ultrasonic water bath for another 30min. Subsequently, 5 µl of the 

dispersion was transferred onto the glassy carbon disk with a diameter of 3mm, 

corresponding to the catalyst loading about 0.15 mg/cm2. 
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Figure S1. AFM images for (a) 2% and (b) 5% Mn-CoOOH nanosheets.
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Figure S2. Co K-edge EXAFS fitting results for (a) pure CoOOH, (b) 2% Mn-CoOOH and 
(c) 5% Mn-CoOOH.
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Figure S3. Mn K-edge EXAFS fitting results for (a) 2% Mn-CoOOH and (b) 5% Mn- 
CoOOH.
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Figure S4. CVs before OER measurements for (a) 2%Mn-CoOOH and (b) 5%Mn-CoOOH.
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Figure S5. CVs towards double-layer capacitance calculations for (a) CoOOH, (b) 2%Mn-
CoOOH, and (c) 5%Mn-CoOOH.
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Figure S6. TEM images of (a) 2% and (b) 5% Mn- CoOOH after OER measurements.
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Figure S7. (a) Co 2p and (b) Mn 2p XPS spectra for Mn-CoOOH before (BF) and 
after (AF) OER tests.
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Figure S8. Mn K-edge EXFAS spectra of 2% and 5% Mn-doped CoOOH nanosheets.
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Table S1. Summary of OER performance of cobalt-based electrocatalysts.
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