Supplementary Information

Electrochemical and electrocatalytic reaction characteristics of boronincorporated graphene via a simple spin-on dopant process

A-Rang Jang,^{†a,b} Young-Woo Lee,^{†a,c} Sang-Seok Lee,^d John Hong,^a Seong-Ho Beak,^e Sangyeon Pak,^a Juwon Lee,^a Hyeon Suk Shin,^b Docheon Ahn,^f Woong-Ki Hong,^g SeungNam Cha,^a Jung Inn Sohn,^{*a} and Il-Kyu Park^{*d}

^a Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK. *E-mail: junginn.sohn@eng.ox.ac.uk; Fax: +44-1865-273010; Tel: +44-1865-273912
^b Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
^c Department of Energy Systems, Soonchunhyang University, Asan, Chungcheongnam-do Jeollabuk-do 31538, Republic of Korea
^d Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 139-743, Republic of Korea. *E-mail: pik@seoultech.ac.kr; Fax: +82029736657; Tel: +82029706349
^e Division of Nano-Energy Convergence Research, DGIST, Daegu 42988, Republic of Korea
^f Beamline Department, Pohang Accelerator Laboratory, Pohang 790-784, Republic of Korea
^g Jeonju Center, Korea Basic Science Institute, Jeonju, Jeollabuk-do 54907, Republic of Korea

[†] These authors contributed equally to this work.

Experimental method

Fabrication of boron-doped graphene

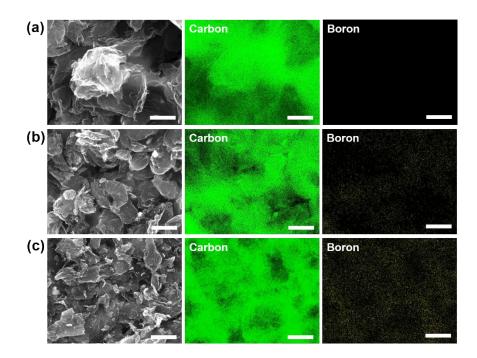
An SOD procedure was used to incorporate elemental boron into graphene. SOD film was prepared on Si substrate by spin-coating a boron-containing dopant solution (Filmtronic B155 compounds). The SOD films were placed at a distance of 10 mm above the graphene flakes (Graphene nanopowder with 3 nm of thickness and ~8 µm of lateral dimensions, Grade AO-1, Graphene supermarket) or CVD-G to avoid direct contact between the graphene and SOD film. The samples were loaded into a tube furnace, and the temperature was increased at 15°C/min to 500 and 600 °C with 2000 sccm of Ar gas for 5 min.^{R1}

Characterization of boron-doped graphene

The surface morphology of pristine graphene flakes, SOD500-GFs, and SOD600-GFs were characterized by field-emission scanning electron microscopy (FE-SEM, Hitachi). The elemental distribution was examined using an energy-dispersive X-ray spectrometer (EDS). The Raman spectra were measured using a micro Raman spectrometer (HORIBA) with a 532-nm laser. The chemical bonding states of the SOD-treated graphene flakes were investigated by FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific). Furthermore, to compare the specific surface area for three as-prepared samples, we performed the nitrogen adsorption and desorption isotherms using a Micromeritics ASAP 2020 at 77K. Also, the specific surface area for each sample was calculated using the BET adsorption isotherm theory based on following equations:

$$\left[\frac{1}{V_a\left(\frac{P_0}{P}-1\right)} = \frac{C-1}{V_mC} \times \frac{P}{P_0} + \frac{1}{V_mC}\right]$$

where, *P* is partial vapor pressure of adsorbate nitrogen gas in equilibrium with the surface at 77.4 K, P_0 is saturated pressure of adsorbate nitrogen gas, V_a is volume of gas adsorbed at STP, V_m is volume of gas adsorbed at STP to produce an apparent monolayer on the sample surface,


and *C* is dimensionless constant that is related to the enthalpy of adsorption of the adsorbate nitrogen gas on sample.

$$S = \frac{V_m \times N \times a}{m \times 22400}$$

where A is specific surface area, N is Avogadro constant, a is effective cross-sectional area of one adsorbate molecule (0.162 nm² for nitrogen), and m is mass of sample.

Electrochemical property analysis of boron-doped graphene

The electrochemical properties of the boron-doped graphene flakes were measured in a threeelectrode system using a potentiostat (Autolab PGSTAT302N). The pseudo-capacitive and electrochemical oxygen reduction of the treated flakes were estimated using cyclic voltammograms (CVs) in 1.0 M KOH electrolyte.

Figure S1. FE-SEM images and elemental mapping of the carbon (green), and boron (yellow) for (a) pristine GFs, (b) SOD500-GFs and (c) SOD600-GFs. Scale bar is 10 um.

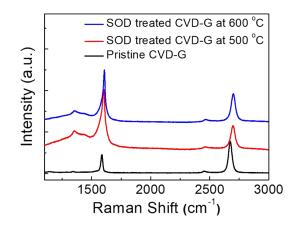
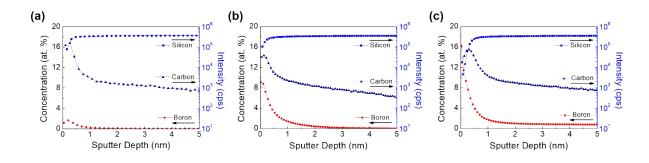



Figure S2. Raman spectra of pristine CVD-G, and SOD-treated CVD-G at 500 °C and 600 °C.

We confirmed that the SOD method can apply to a monolayer graphene grown by chemical vapor deposition method (CVD-G). Raman spectroscopy is a powerful nondestructive tool for identifying the doping of graphene. Fig. S2 shows the Raman spectra of pristine CVD-G and SOD-treated CVD-G at 500 °C and 600 °C. The Raman spectra of all the samples show the G and 2D peaks at 1586 cm⁻¹, and 2674 cm⁻¹ for the pristine CVD-G, 1600 cm⁻¹ and 2698 cm⁻¹ for SOD treated CVD-G at 500 °C, and 1608 cm⁻¹ and 2700 cm⁻¹ for SOD treated CVD-G at 600 °C, respectively, confirming the structural properties of graphene. However, interestingly, both the G and 2D peak positions of SOD-treated CVD-G are shifted to higher wave numbers compared to the pristine CVD-G. Moreover, SOD-treated CVD-G samples show an increase in peak intensities of D peaks. These Raman results clearly indicate that the SOD-treated CVD-G G is successfully p-type doped by boron dopants.^{R2,R3}

Figure S3. Secondary ion mass spectroscopy (SIMS) depth profiles results of (a) pristine CVD-G, and SOD-treated CVD-G (b) at 500 °C and (c) 600 °C.

Material	Conductivity (S/m)
Pristine CVD-G	0.19 X 10 ⁴
SOD treated CVD-G at 500 °C	1.86 X 104
SOD treated CVD-G at 600 °C	2.01 X 104

Table S1. The electrical conductivity of pristine CVD-G, and SOD-treated CVD-G at 500 °C and 600 °C.

In order to further confirm the incorporation of boron dopants into CVD-G crystal, we performed secondary ion mass spectroscopy (SIMS) depth profiles. **Fig. S3** shows secondary ion mass spectroscopy (SIMS) depth profiles results of (a) pristine CVD-G, and SOD-treated CVD-G (b) at 500 °C and (c) 600 °C. We clearly observed the boron signal from the both of SOD treated CVD-G at 500 °C and 600 °C, whereas no boron signal was detected from pristine CVD-G before SOD treatment. These results further confirm that CVD-G is successfully doped with boron through relatively low-temperature processing of SODs. The electrical properties of pristine CVD-G and SOD-treated CVD-G are measured using a Hall measurement system

(ECOPIA HMS-5000). The electrical conductivity of SOD-treated CVD-G is enhanced about 10 times higher than that of pristine CVD-G, because of the p-type doping effect of graphene by boron dopants (**Table S1**). By combining the structural and chemical analyses, it can be expected that the SOD-treated graphene can be acted as the active site for pseudo-capacitive behavior in the supercapacitor and ORR in alkaline fuel cell because the boron doped graphene with p-type conductivity can not only improve electrical conductivity compared to pure graphene but also can be acted as an electron acceptor for reaction with the OH⁻ ions.

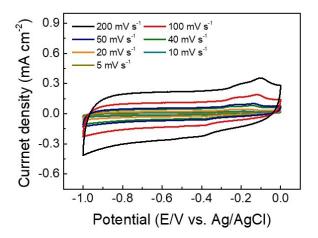


Figure S4. CV curves for the pristine GFs at different scan rates from 5 to 200 mV s⁻¹.

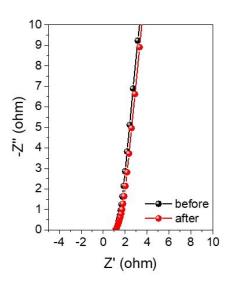


Figure S5. Nyquist plots of the SOD600-GFs before and after stability tests.

References

- R1. D.-Y. Sin, I.-K. Park and H.-J. Ahn, RSC Adv., 2016, 6, 58823-58830.
- R2. L. Panchakarla, K. Subrahmanyam, S. Saha, A. Govindaraj, H. Krishnamurthy, U. Waghmare and C. Rao, *Adv. Mater.*, 2009, 21, 4726-4730.
- R3. M. Kalbac, A. Reina-Cecco, H. Farhat, J. Kong, L. Kavan and M. S. Dresselhaus, ACS Nano, 2010, 4, 6055-6063.