Supporting Information for

Encapsulating porous SnO_2 into hybrid nanocarbon matrix for long lifetime Li storage

Yi Zhao,^{ab} Luyuan Paul Wang,^{bd} Shibo Xi,^c Yonghua Du,^c Qianqian Yao,^a Lunhui

Guan, *a Zhichuan J. Xu*bde

^aCAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou 350108, China

^bSchool of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore ^cInstitute of Chemical and Engineering Sciences A*STAR, 1 Pesek Road, 627833, Singapore

^dSingapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy-Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602

^eEnergy Research Institute @ NTU, Nanyang Technological University, 50 Nanyang Drive, Singapore, Singapore 639798, Singapore

*Corresponding Author

E-mail: xuzc@ntu.edu.sg, guanlh@fjirsm.ac.cn

EXPERIMENTAL SECTION

Synthesis of G@porous SiO₂ composite: The graphene oxide (GO) was synthesized via a modified Hummer's method. In a typical experiment, 160 mg cetyltrimethylammonium bromide (CTAB) was firstly dissolved in a mixture of 30 ml H₂O, 120 ml ethanol, and 1.5 ml NH₃.H₂O. Then, 40 mg GO was dispersed in the above solution by ultrasonication, followed with slow addition of 1 mL tetraethyl orthosilicate (TEOS) and kept under stirring for 12 h. After washed with H₂O and dried at 80 °C, this product was further annealing at 800 °C for 3 h at Ar atmosphere to obtain G@porous SiO₂ composite.

Synthesis of G@SiO₂@SnO₂ composite: 200 mg G@porous SiO₂ composite and 250 mg SnCl₂.2H₂O was firstly dispersed into 10 ml ethanol by ultrasonication. Then, the above solution was stirred at 45 °C to evaporate the ethanol. The obtained mixture was fine ground and calcinated at 350 °C for 3h in Air to obtain $G@SiO_2@SnO_2$ composite.

Synthesis of G@p-SnO₂@C composite: Typically, 160 mg above $G@SiO_2@SnO_2$ composite was sonicated in 14 mL H₂O for 0.5 h. Then, 0.05 mL NH₃.H₂O and 0.5 ml 0.01 M CTAB aqueous solutions were dropped into the above dispersion. After vigorously stirred for 0.5 h, 25 mg resorcinol and 35µl formaldehyde were added and kept under stirring for 16 h at room temperature. The obtained product was filtered and washed with water, dried at 80 °C, and calcinated at 600 °C for 2 h under Ar atmosphere for carbonization. Finally, SiO₂ layer was

removed with 1M NaOH solution at 50 °C for 12 h to obtain $G@p-SnO_2@C$ composite. The $G@p-SnO_2$ composite was fabricated by directly etching the $G@SiO_2@SnO_2$ composite with 1M NaOH solution.

Synthesis of G@SnO₂ and G@SnO₂@C composites: G@SnO₂ composite was synthesized through the redox reaction between GO and SnCl₂. In a typical experiment, 200 mg SnCl₂ was added into 50 mL 0.2 HCl solution containing 24 mg GO. After being stirred for 1 h at room temperature, this solution was further refluxed at 90 °C for 1 h to obtain G@SnO₂ composite. For the synthesis of G@SnO₂@C composite, 50 mg G@SnO₂ was added into 7 ml 0.25M glucose solution and sonicated for 0.5 h. Then, the solution was transferred into 25 mL Teflon-line stainless steel autoclave and kept at 170 °C for 3 h. After filtered and washed with ethanol and water, this sample was annealed at 500 °C for 3h at Ar atmosphere to obtain G@SnO₂@C composite.

Materials Characterization: The structure and morphology of the obtained samples were characterized via scanning electron microscopy (SEM, JSM-7600F and SU-8010), transmission electron microscope (TEM, JEM-2010F and Tecnai F20), x-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi), Brunauer–Emmett–Teller surface area analyzer (BET, Micromeritics ASAP2020), X-ray diffraction (Shimadzu, XRD-6000), and Thermogravimetry analyses (TGA, Q500). XANES was performed at Singapore Synchrotron Light Source, XAFCA beamline.

Electrochemical Measurements: The electrochemical behaviors of G@p-

 $SnO_2@C$ and $G@p-SnO_2$ composites were investigated via CR2032 coin-type test cells. The working electrodes consisted of 80 wt% active materials, 10 wt% conductive carbon (ketjen black), and 10 wt% carboxymethyl cellulose as the binder, which were mixed with de-ionized water, pasted on Ni foam, and then dried at 80 °C overnight under vacuum before use. Cells were assembled in an Ar-filled glove box with concentration of moisture and oxygen below 1 ppm. The counter electrode was lithium foil and the separator was celgard 2300 membrane. The electrolyte was 1M LiPF₆ in ethylene carbonate (EC): ethylmethyl carbonate (EMC): dimethyl carbonate (DMC) with a volume ratio of 1: 1: 1. The obtained cells were discharged and charged on a Neware Battery tester over a range of 0.05 V to 3.0 V vs. Li⁺/Li at room temperature. Cyclic voltammetry (CV) test was carried out on a PINE WaveDriver 20 bipotentiostat with a scan rate of 0.5 mV s⁻¹.

Fig. S1 (a-b) SEM images of G@porous SiO₂ composite.

Fig. S2 (a-b) SEM images of G@SiO₂@SnO₂ composite.

Fig. S3 (a-b) TEM images of G@p-SnO₂@C composite from other aspect.

Fig. S4 TEM images of the pure hybrid nanocarbon matrix, showing the "carbon house" microstructure of this composite with graphene (white arrows) as "floor" and carbon coating layer as "walls and ceiling".

Fig. S5 (a-b) SEM and (c-d) TEM images of G@p-SnO₂.

Fig. S6 TEM images of G@SnO₂ composite.

Fig. S7 TEM images of G@SnO₂@C composite.

Fig. S8 XRD pattern of G@p-SnO₂ composite.

Fig. S9 XRD patterns of G@SnO₂ and G@SnO₂@C composites.

Fig. S10 TGA curves of G@SnO₂ and G@SnO₂@C composites.

Fig. S11 Selected discharge/charge profiles of G@p-SnO₂@C electrode at 200 mA g⁻¹ for LIBs.

Fig. S12 (a-b) TEM images of $G@p-SnO_2@C$ electrode after first discharge-charge cycle for LIBs.

Fig. S13 The Sn L₃-edge XANES spectra of $G@p-SnO_2@C$ electrode and its fitting data based on linear combination fit analysis with commercial SnO_2 and SnO as standards.

Fig. S14 (a) Typical discharge/charge profiles, and (b) cycling performance of G@p-SnO₂@C electrode at 100 mA g⁻¹ for LIBs.

Fig. S15 (a, c, e) Discharge and charge profiles at various current densities and (b, d, f) rate performance of (a-b) $G@p-SnO_2$, (c-d) $G@SnO_2$, and (e-f) $G@SnO_2@C$ composites.

Fig. S16 (a-c) TEM images of $p-SnO_2@C$ composite under various magnifications. Inset in (c) is the HRTEM image of SnO_2 NPs. (d) XRD pattern of $p-SnO_2@C$ composite.

Fig. S17 (a) Discharge and charge profiles and (b) rate performance of $p-SnO_2@C$ composite at various current densities. At high rate of 1.5, 3, and 5.0 A g⁻¹, p-SnO₂@C only delivered rate capabilities of 630, 400, and 270 mA h g⁻¹, much lower than the values of G@p-SnO₂@C. This result demonstrated that the existence of rGO can significantly enhance the rate performance of G@p-SnO₂@C composite, probably due to the effect of rGO to improve both the electron and Li⁺ ion transport and shorten their diffusion length.

Fig. S18 Typical discharge-charge profiles of (a) $G@SnO_2$, (b) $G@SnO_2@C$, (c) $G@p-SnO_2$, and (d) $G@p-SnO_2@C$ composites at 1.5 A g⁻¹.

Materials	Current density (mA g ⁻ ¹)	Cycle Number	Capacity (mAh g ⁻¹)	Loading of active material (mg cm ⁻²)	Reference				
Nanostructured SnO ₂ anodes									
SnO ₂ nanowires	100	50	~230	-	[1]				
Hollow SnO ₂ sphere	160	20	~650	-	[2]				
SnO ₂ nanotube	100	30	468	-	[3]				
SnO ₂ nanoboxes	0.2 C	40	570	-	[4]				
Interconnected SnO ₂ NPs	1500	100	430	-	[5]				
SnO ₂ -in-TiO ₂ wire-in- tube	400	1000	393	4.15	[6]				
SnO ₂ /NiO nanotube@Ag	1000	500	826	3	[7]				
SnO ₂ hollow microsphere	100	50	750	1	[8]				
SnO ₂ -carbon based anodes									
Hollow SnO ₂ @C	500	100	460	1.5	[9]				
SnO ₂ @C nanotube	200	50	700	-	[10]				
SnO ₂ @C microboxes	200	150	550	-	[11]				
SnO ₂ @C nanotube	500	200	596	-	[12]				
SnO ₂ @C	100	200	880	-	[13]				
Hollow SnO ₂ @N-C box	500	100	491	1.5	[14]				
SnO ₂ in porous carbon	1000	800	930	0.7-1	[15]				
SnO ₂ @N-carbon nanofiber	1000	300	754	-	[16]				
Yolk-shell SnO ₂ @C	1C	300	516	0.6-1.0	[17]				
SnO ₂ @C nanotube	500	100	663	-	[18]				
Hollow SnO ₂ @C microsphere	500	100	600	-	[19]				
SnO ₂ @C	200	550	649	-	[20]				

Table S1. Electrochemical performance of SnO_2 -based anode materials for LIBs.

G@p-SnO ₂ @G	200 1500	200 1800	1146 418	0.8-1.2	this work
Sb-SnO ₂ -CNT-graphene	1000	1000	685	1.2	[36]
Graphene-SnO ₂	1000	230	970	3	[35]
Graphene-SnO _{2-x}	200	100	950	-	[34]
Hollow SnO ₂ @G	1000	500	552	1.5-2.0	[33]
G@SnO ₂ -SnS@C	100	110	1236	-	[32]
CNT@SnO ₂ @C	1000	100	1100	-	[31]
G@SnO ₂ @C	100	360	1165	-	[30]
G@SnO ₂ nanorod@C	1000	330	~770	-	[29]
G@SnO ₂ @C	200	100	800	-	[28]
N-doped G@SnO ₂	500	500	1346	10	[27]
$G@$ porous SnO_2	78.2	50	847	-	[26]
N-doped G@SnO ₂	50	50	910	-	[25]
Graphene@SnO ₂	50	30	570	-	[24]
Graphene-SnO ₂ based	anodes				
SnO ₂ -Mn-graphite	1000	900	600	1.0-1.5	[23]
coating	160	300	1300	-	[22]
SnO ₂ -polydopamine					
TiO ₂ -Sn@CNF	200	1100	643	-	[21]
Pipe-Wire					

M. S. Park, G. X. Wang, Y. M. Kang, D. Wexler, S. X. Dou, H. K. Liu, Angew.
Chem. Int. Edit. 2007, 46, 750.

[2] S. J. Ding, J. S. Chen, G. G. Qi, X. N. Duan, Z. Y. Wang, E. P. Giannelis, L. A. Archer, X. W. Lou, J. Am. Chem. Soc. 2011, 133, 21.

[3] J. F. Ye, H. J. Zhang, R. Yang, X. G. Li, L. M. Qi, Small 2010, 6, 296.

[4] Z. Y. Wang, D. Y. Luan, F. Y. C. Boey, X. W. Lou, J. Am. Chem. Soc. 2011, 133, 4738.

[5] V. Etacheri, G. A. Seisenbaeva, J. Caruthers, G. Daniel, J. M. Nedelec, V. G. Kessler, V. G. Pol, Adv. Energy Mater. 2015, 5.

- [6] C. Guan, X. H. Wang, Q. Zhang, Z. X. Fan, H. Zhang, H. J. Fan, Nano Lett. 2014, 14, 4852.
- [7] C. Kim, J. W. Jung, K. R. Yoon, D. Y. Youn, S. Park, I. D. Kim, Acs Nano 2016, 10, 11317.
- [8] J. Zhang, H. Ren, J. Y. Wang, J. Qi, R. B. Yu, D. Wang, Y. L. Liu, J. Mater. Chem. A 2016, 4, 17673.
- [9] X. W. Lou, C. M. Li, L. A. Archer, Adv. Mater. 2009, 21, 2536.
- [10] L. Zhang, G. Q. Zhang, H. B. Wu, L. Yu, X. W. Lou, Adv. Mater. 2013, 25, 2589.
- [11] L. Zhang, H. B. Wu, B. Liu, X. W. Lou, Energy Environ. Sci. 2014, 7, 1013.
- [12] X. S. Zhou, L. Yu, X. W. Lou, Nanoscale 2016, 8, 8384.
- [13] M. H. Wang, H. Yang, X. L. Zhou, W. Shi, Z. Zhou, P. Cheng, Chem. Commun.2016, 52, 717.
- [14] X. S. Zhou, L. Yu, X. W. Lou, Adv. Energy Mater. 2016, 6, 1600451.
- [15]L. Shen, F. Liu, G. Chen, H. H. Zhou, Z. Y. Le, H. B. Wu, G. Wang, Y. F. Lu, J. Mater. Chem. A 2016, 4, 18706.
- [16]L. Xia, S. Q. Wang, G. X. Liu, L. X. Ding, D. D. Li, H. H. Wang, S. Z. Qiao, Small 2016, 12, 853.
- [17]B. Huang, X. H. Li, Y. Pei, S. Li, X. Cao, R. C. Masse, G. Z. Cao, Small 2016, 12, 1945.
- [18]C. H. Han, B. X. Zhang, K. N. Zhao, J. S. Meng, Q. He, P. He, W. Yang, Q. Li, L.Q. Mai, Chem. Commun. 2017, 53, 9542.
- [19]L. L. Hu, L. P. Yang, D. Zhang, X. S. Tao, C. Zeng, A. M. Cao, L. J. Wan, Chem. Commun. 2017, 53, 11189.
- [20] L. Y. Yang, S. T. Li, J. Liu, K. J. Zhu, S. L. Liu, M. Lei, J. Mater. Chem. A 2017, 5, 1629.
- [21] M. L. Mao, F. L. Yan, C. Y. Cui, J. M. Ma, M. Zhang, T. H. Wang, C. S. Wang,

Nano Lett. 2017, 17, 3830.

[22]B. B. Jiang, Y. J. He, B. Li, S. Q. Zhao, S. Wang, Y. B. He, Z. Q. Lin, Angew. Chem. Int. Edit. 2017, 56, 1869.

[23]R. Z. Hu, Y. P. Ouyang, T. Liang, X. Tang, B. Yuan, J. Liu, L. Zhang, L. C. Yang, M. Zhu, Energy Environ. Sci. 2017, 10, 2017.

[24] S. M. Paek, E. Yoo, I. Honma, Nano Lett. 2009, 9, 72.

[25] X. Wang, X. Q. Cao, L. Bourgeois, H. Guan, S. M. Chen, Y. T. Zhong, D. M.

Tang, H. Q. Li, T. Y. Zhai, L. Li, Y. Bando, D. Golberg, Adv. Funct. Mater. 2012, 22, 2682.

[26]S. Yang, W. B. Yue, J. Zhu, Y. Ren, X. J. Yang, Adv. Funct. Mater. 2013, 23, 3570.

[27] X. S. Zhou, L. J. Wan, Y. G. Guo, Adv. Mater. 2013, 25, 2152.

[28]Y. Z. Su, S. Li, D. Q. Wu, F. Zhang, H. W. Liang, P. F. Gao, C. Cheng, X. L. Feng, Acs Nano. 2012, 6, 8349.

[29]D. N. Wang, J. L. Yang, X. F. Li, D. S. Geng, R. Y. Li, M. Cai, T. K. Sham, X. L. Sun, Energy Environ. Sci. 2013, 6, 2900.

[30] Y. X. Liu, P. Liu, D. Q. Wu, Y. S. Huang, Y. P. Tang, Y. Z. Su, F. Zhang, X. L. Feng, Chem. Eur. J. 2015, 21, 5617.

[31]C. R. Ma, W. M. Zhang, Y. S. He, Q. Gong, H. Y. Che, Z. F. Ma, Nanoscale **2016**, 8, 4121.

[32] J. Q. Shan, Y. X. Liu, P. Liu, Y. S. Huang, Y. Z. Su, D. Q. Wu, X. L. Feng, J. Mater. Chem. A 2015, 3, 24148.

[33]X. Hu, G. Zeng, J. X. Chen, C. Z. Lu, Z. H. Wen, J. Mater. Chem. A 2017, 5, 4535.

[34] W. J. Dong, J. J. Xu, C. Wang, Y. Lu, X. Y. Liu, X. Wang, X. T. Yuan, Z. Wang,T. Q. Lin, M. L. Sui, I. W. Chen, F. Q. Huang, Adv. Mater. 2017, 29, 1700136.

[35] W. H. Chen, K. M. Song, L. W. Mi, X. M. Feng, J. M. Zhang, S. Z. Cui, C. T. Liu, J. Mater. Chem. A 2017, 5, 10027.

- [36] J. Cui, S. Yao, J.-Q. Huang, L. Qin, W. G. Chong, Z. Sadighi, J. Huang, Z. Wang,
- J.-K. Kim, Energy Storage Materials 2017, 9, 85.

Fig. S19 (a) A single titration profile of G@p-SnO₂@C electrode during the third charge cycle with schematic illustration of different parameters. (b) Variation of voltage against $\tau^{1/2}$ to show the linear fit.

electrodes	cycles	R _s	R _{SEI}	R _{ct}
G@p-SnO ₂ @C	3th	5.99	13.44	47.68
	100th	14.93	17.77	43.21
G@p-SnO ₂	3th	5.88	9.11	59.61
	100th	17.1	14.99	113.3

Table. S2 The fitting impedance parameters of $G@p-SnO_2@C$ and $G@p-SnO_2$ electrodes after cycles.

Fig. S20 (a-b) SEM and (c-d) TEM images of G@p-SnO₂@C electrode after 100 cycles, showing the excellent structure stability of this composite during cycles.