**Electronic Supplementary Information** 

## Template-directed synthesis of sulphur doped NiCoFe layered double hydroxide porous nanosheets with enhanced electrocatalytic activity for oxygen evolution reaction

Li-Ming Cao,<sup>a</sup> Jia-Wei Wang,<sup>a</sup> Di-Chang Zhong,<sup>\*b</sup> and Tong-Bu Lu<sup>\*a,b</sup>

<sup>a</sup>MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
<sup>b</sup>Institute of New Energy Materials & Low Carbon Technology, School of Material Science & Engineering, Tianjin University of Technology, Tianjin 300384, China



Fig. S1 EDX analyses for S-NiCoFe LDH.



Fig. S2 (a) LSV curves and (b) Tafel plots of S-NiCoFe LDH powder/CC, and  $IrO_2/CC$ , recorded at a scan rate of 1 mV s<sup>-1</sup> in 1.0 M KOH.



Fig. S3 The measured and theoretical yields of  $O_2$  over time during electrolysis of S-NiCoFe LDH at the current density of 10 mA cm<sup>-2</sup>.



Fig. S4 SEM image of S-NiCoFe LDH after OER.



Fig. S5 XRD patterns of S-NiCoFe LDH after OER.



Fig. S6 EDX analyses for S-NiCoFe LDH after OER.



**Fig. S7** High resolution XPS spectra of (a) Ni 2p, (b) Co 2p, (c) Fe 2p, and (d) S 2p for S-NiCoFe LDH after OER.



**Fig. S8** High resolution XPS spectra of (a) Ni 2p, (b) Co 2p, (c) Fe 2p, and (d) S 2p for S-NiCoFe LDH after 500 CV cycles.

| Catalyst                                             | η at 10 mA<br>cm <sup>-2</sup> (mV) | η at 100 mA<br>cm <sup>-2</sup> (mV) | Tafel slope<br>(mV del <sup>-1</sup> ) | Mass loading<br>(mg cm <sup>-2</sup> ) | TOF <sub>300</sub> (s <sup>-1</sup> ) <sup>b</sup> | Substrate <sup>c</sup> | Reference |
|------------------------------------------------------|-------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------|------------------------|-----------|
| S-NiCoFe LDH                                         | 206                                 | 258                                  | 46                                     | 1.05                                   | 0.102                                              | CC                     | This work |
| NiFeSe                                               | N.A.                                | 270                                  | 47.2                                   | 1.5                                    | N.A.                                               | NF                     | 1         |
| NiFeO <sub>x</sub>                                   | 230                                 | 260                                  | 31.5                                   | 1.6                                    | N.A.                                               | CFP                    | 2         |
| Fe(PO <sub>3</sub> ) <sub>2</sub> /Ni <sub>2</sub> P | 177                                 | 221                                  | 51.9                                   | 8.0                                    | 0.12                                               | NF                     | 3         |
| Fe-doped Ni <sub>3</sub> S <sub>2</sub>              | N.A.                                | 253                                  | 65.5                                   | 12.7                                   | N.A.                                               | NF                     | 4         |
| Gelled FeCoW                                         | 190                                 | 250                                  | N.A.                                   | 0.21                                   | 0.46                                               | Au@NF                  | 5         |
| MoS <sub>2</sub> /Ni <sub>3</sub> S <sub>2</sub>     | 218                                 | 290                                  | 88                                     | 9.7                                    | N.A.                                               | NF                     | 6         |
| CoFe <sub>2</sub> O <sub>4</sub> /C<br>NRAs          | 240                                 | 290                                  | 45                                     | 0.424                                  | N.A.                                               | NF                     | 7         |
| Co-Fe-P                                              | 244                                 | N.A.                                 | 58                                     | 1.03                                   | 0.0915                                             | NF                     | 8         |
| NiCoP                                                | 242                                 | 330                                  | 64.2                                   | 2.0                                    | N.A.                                               | CC                     | 9         |
| Ni <sub>1.5</sub> Fe <sub>0.5</sub> P                | 264                                 | 293                                  | 55                                     | 1.38                                   | N.A.                                               | CFP                    | 10        |

Table S1. OER activity of some reported electrocatalysts.<sup>a</sup>

(a) The electrolyte is 1.0 M KOH unless otherwise stated.  $\eta$  is overpotential. (b) TOFs<sub>300</sub> for the turnover frequencies at overpotential = 300 mV. (c) NF = nickel foam; CFP = carbon fiber paper; CC = carbon cloth.

## References

- Z. Wang, J. Li, X. Tian, X. Wang, Y. Yu, K. A. Owusu, L. He and L. Mai, ACS Appl. Mater. Interfaces, 2016, 8, 19386-19392.
- 2 H. Wang, H. W. Lee, Y. Deng, Z. Lu, P. C. Hsu, Y. Liu, D. Lin and Y. Cui, *Nat. Commun.*, 2015, 6, 7261.
- 3 H. Zhou, F. Yu, J. Sun, R. He, S. Chen, C. W. Chu and Z. Ren, *Proc. Natl. Acad. Sci. U. S. A.*, 2017, **114**, 5607-5611.
- 4 N. Cheng, Q. Liu, A. M. Asiri, W. Xing and X. Sun, J. Mater. Chem. A, 2015, **3**, 23207-23212.
- 5 B. Zhang, X. Zheng, O. Voznyy, R. Comin,; M. Bajdich, M. Garcia-Melchor, L. Han, J. Xu, M. Liu, L. Zheng, F. P. Garcia de Arquer, C. T. Dinh, F. Fan, M. Yuan, E. Yassitepe, N. Chen, T. Regier, P. Liu, Y. Li, P. De Luna, A. Janmohamed, H. L. Xin, H. Yang, A. Vojvodic and E. H. Sargent, *Science*, 2016, **352**, 333-337.

- 6 J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang and X. Feng, *Angew. Chem. Int. Ed.*, 2016, **55**, 6702-6707.
- 7 X. F. Lu, L. F. Gu, J. W. Wang, J. X. Wu, P. Q. Liao and G. R. Li, *Adv. Mater.*, 2017, 29, 1604437.
- 8 T. Zhang, J. Du, P. Xi and C. Xu, ACS Appl. Mater. Interfaces, 2017, 9, 362-370.
- 9 C. Du, L. Yang, F. Yang, G. Cheng and W. Luo, ACS Catal., 2017, 7, 4131-4137.
- 10 H. Huang, C. Yu, C. Zhao, X. Han, J. Yang, Z. Liu, S. Li, M. Zhang and J. Qiu, *Nano Energy*, 2017, **34**, 472-480.