Electronic Supplementary Information (ESI)

Self-assembly of Polyoxometalate / Reduced Graphene Oxide Composites Induced by Ionic Liquids as High Rate Cathode for Batteries: Killing Two Birds with One Stone

Feng-Cui Shen^{a,b,c}, Yi-Rong Wang^b, Shun-Li Li^b, Jiang Liu^b, Long-Zhang Dong^b, Tao Wei^b, Xing Long Wu^d, Yan Xu* and Ya-Qian Lan^b*

^a College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China

^b Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China

^c School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, P. *R. China*

^d National and Local United Engineering Laboratory for Power Batteries. Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, P. R. China

*Correspondence to: <u>yqlan@njnu.edu.cn</u>

Figure S1. View of the crystal structure and corresponding XRD characterization of $[H_6Mn_3V_{18}O_{42}(VO_4) (H_2O)_{12}]$ 30H₂O. (a) crystal structure of $[H_6Mn_3V_{18}O_{42}(VO_4) (H_2O)_{12}]$ 30H₂O. (b) corresponding XRD pattern, the simulated XRD was obtained by Single-crystal X-ray diffraction analysis.

Figure S2. View of the crystal structure and corresponding XRD characterization of $Co_3V_{18}O_{42}(H_2O)_{12}(SO_4)$ 24H₂O. (a) crystal structure $Co_3V_{18}O_{42}(H_2O)_{12}(SO_4)$ 24H₂O. (b) corresponding XRD pattern, the simulated XRD was obtained by Single-crystal X-ray diffraction analysis.

Figure S3. View of the crystal structure and corresponding XRD characterization of $Fe_3V_{18}O_{42}(H_2O)_{12}(VO_4)$ 24H₂O. (a) crystal structure $Fe_3V_{18}O_{42}(H_2O)_{12}(VO_4)$ 24H₂O. (b) corresponding XRD pattern, the simulated XRD was obtained by Single-crystal X-ray diffraction analysis.

Figure S4. FT-IR and TG characterization of composites. (a) Infrared Spectroscopy and (b) TG

curve of Mn_3V_{19}/RGO and Mn_3V_{19} -HIL/RGO-1.

Figure S5. SEM and TEM images of relative composites. (a) SEM and (b) TEM image of Mn_3V_{19}/RGO , (c) SEM and (d) TEM image of Mn_3V_{19} -HIL, (e) SEM and (f) TEM image of Mn_3V_{19} -EIL/RGO synthesized.

Figure S6. The morphology characterization of Co_3V_{18} -HIL/RGO. (a) SEM, (b) TEM image

and (c) corresponding mappings of Co_3V_{18} -HIL/RGO synthesized.

Figure S7. The morphology characterization of Fe₃V₁₉-HIL/RGO. (a) SEM, (b) TEM image and

(c) corresponding mappings of Fe_3V_{19} -HIL/RGO synthesized.

Figure S8. EDS analysis. EDS spectrum of (a) Mn₃V₁₉/RGO, (b) Mn₃V₁₉-HIL/RGO-1, (c) Co₃V₁₈-

HIL/RGO and (d) Fe₃V₁₉-HIL/RGO composite.

Figure S9. Raman spectra of Mn₃V₁₉, Mn₃V₁₉/RGO and Mn₃V₁₉-HIL/RGO-1.

Figure S10. N₂ adsorption-desorption isotherm and pore size distribution. (A) Nitrogen adsorption-desorption isotherms of Mn_3V_{19}/RGO and Mn_3V_{19} -HIL/RGO-1 respectively. (B) The pore size distribution of the samples by BJH method.

Figure S11. XPS analysis. High-resolution XPS spectra of the Mn_3V_{19} -HIL/RGO-1 at the lithiated (a-d) and delithiated state (e-h) of LIBs.

Figure S12. Nyquist plots of Mn₃V₁₉-HIL/RGO-1 and Mn₃V₁₉/RGO-1 electrodes in LIBs.

Figure S13. SEM images of the Mn₃V₁₉-HIL/RGO-1 electrode. (a) before and (b) after cycles in

LIBs.

Figure S14. Electrochemical characterization of Mn_3V_{19} -HIL/RGO relative composites as LIB cathodes. (a) Cycle stability of Mn_3V_{19} -HIL/RGO-1, Mn_3V_{19} /RGO and Mn_3V_{19} -HIL at 100 mA g⁻¹ and (b) the corresponding discharge curves of 100th cycles. (c) Cycle stability of Mn_3V_{19} -HIL/RGO-1, Mn_3V_{19} -HIL/RGO-2 and Mn_3V_{19} -HIL/RGO-3 and (d) the corresponding discharge curves of 100th cycles. (e) Cycling performance of Mn_3V_{19} -HIL/RGO-1 at 5 A/g.

Figure S15. Electrochemical characterization of Mn_3V_{19} -EIL/RGO as the LIB cathode. (a) Discharge–charge curves of Mn_3V_{19} -EIL/RGO at 100 mA g⁻¹. (b) Cycle stability of Mn_3V_{19} -EIL/RGO at 100 mA g⁻¹. (c) Rate capability performance of Mn_3V_{19} -EIL/RGO at various current densities (100, 200, 400, 1000, 2000, 5000, 1000, 100 mA g⁻¹).

Figure S16. Electrochemical characterization of Co_3V_{18} -HIL/RGO as the LIB cathode. (a) Discharge–charge curves and (b) Cycle stability of Co_3V_{18} -HIL/RGO at 100 mA g⁻¹. (c) Rate capability performance of Co_3V_{18} -HIL/RGO at various current densities (100, 200, 400, 1000, 2000, 5000, 1000, 100 mA g⁻¹).

Figure S17. Electrochemical characterization of Fe_3V_{19} -HIL/RGO as the LIB cathode. (a) Discharge–charge curves and (b) Cycle stability of Fe_3V_{19} -HIL/RGO at 100 mA g⁻¹. (c) Rate capability performance of Fe_3V_{19} -HIL/RGO at various current densities (100, 200, 400, 1000, 2000, 5000, 1000, 100 mA g⁻¹).

Figure S18. Nyquist plots of Mn₃V₁₉-HIL/RGO-1 electrodes in SIBs.

Supplemental Tables

Table S1. Ratio of the elements in Mn_3V_{19} -HIL/RGO-1, Co_3V_{18} -HIL/RGO and Fe_3V_{19} -HIL/RGO cathode.

element	С	N	0	Mn	V
atomic percent (%)	39.25	3.72	39.01	2.3	15.71
element	С	N	0	Fe	V
atomic percent (%)	24.2	4.64	48.64	2.14	20.38
element	С	N	0	Со	V
atomic percent (%)	21.95	5.46	49.44	1.78	21.37

Cathode composite	RC (mAh g ⁻¹)/ CR(mAh g ⁻¹)	HRC (mAh g ⁻¹)/ CR(mAh g ⁻¹)	Potential range (V)	Active material ratio(%)	Ref
Mn ₃ V ₁₉ -HIL/RGO-1	156.3/100	92/500	1 5-3 5	70	This
	(50 cycles)	(200 cycles)	1.0 5.0		work
Na2H8[MnV13O38]/G	140/26 (0.2C)	$\sim 75/420$	1 5-3 9	70	1
	(100 cycle)	- / 3/420	1.5-5.7	70	
K ₃ V ₂ (PO ₄) ₃ /C	119/100	$\sim 62/500$	154	50	2
	(100 cycles)	(1000 cycles)	1.5-4		
R-Na2–6MnHFC	~105/100	120/1850 (200)	2.4	70	3
	(100 cycles)	120/1830 (200)	2-4		
Na ₂ Mn ^I [Mn ^{II} (CN) ₆]	$\sim 209/40$	~130/400 (2C)	1.2.4	80	4
	(frist cycles)	(100 cycles)	1.2-4		
P2-Na _{0.7} CoO ₂	125/5	~95/50 (0.4C)	2 2 9	70	5
	(5 cycles)	(300 cycles)	2-3.8		5
PDMS/rGO	~126/50	~85/400	2542	80	6
sponge/VOPO ₄	(five cycles)	(300 cycles)	2.3-4.3		

 Table S2. Comparison of relevant cathode for SIBs.

RC: Reversible capacity. CR: Charge rate.

Cathode composite	RC (mAh g ⁻¹)/ CR(mAh g ⁻¹)	RC (mAh g ⁻¹)/ CR(mAh g ⁻¹)	Potential range (V)	Active material ratio(%)	Ref
Mn ₃ V ₁₉ -HIL/RGO-1	188.1/100	121/5000	1 5-3 5	70	This
	(100 cycles)	(400 cycles)			work
Li ₇ [V ₁₅ O ₃₆ (CO ₃)]	250/50	150/2000	1 9-4	70	7
	(the first cycle)	(100 cycles)	1.9 4		
PANI/PMo ₁₂	149.5/27	$\sim 100/540$	15-42	75	8
	(50 cycles)	(5 cycles)	1.5-4.2		
SiW ₁₂ /rGO	~160/10	120/2000	154	60	9
	(10 cycles)	(10 cycles)	1.5-4		
VS ₂ /GNS	185.3/36	114/3600	1 5-3 5	70	10
	(200 cycles)	(5 cycles)	1.5 5.5		
3S-V ₂ O ₅ -HMSs	402.4/1000	331.8/2000	1.5-4.0	70	11
	(100 cycles)	(11 cycles)	1.5-4.0		
HNS VO ₂	134/100	105.3/1000	2.2	70	12
	(100 cycles)	(500 cycles)	2-3		
LiMn ₂ O ₄	122/121	99/2420	2.4.5	65	13
CSC-NPs	(5 cycles)	(400 cycles)	5-4.5		
TiO ₂ microboxes	187/170	63/3400	1.2	70	14
	(300 cycles)	(20 cycles)	1-3		

 Table S3. Comparison of relevant cathode for LIBs.

RC: Reversible capacity. CR: Charge rate.

Reference

- J. Liu, Z. Chen, W. Xuan, S. Chen, B. Zhang, J. Wang, H. Wang, B. Tian, M. Chen, X. Fan, Y. Huang, T. C. Sum, J. Lin and Z. X. Shen, *ACS Nano*, 2017, 11, 6911-6920.
- X. Wang, C. Niu, J. Meng, P. Hu, X. Xu, X. Wei, L. Zhou, K. Zhao, W. Luo, M. Yan and L. Mai, *Adv. Energy Mater.*, 2015, 5, 1500716.
- J. Song, L. Wang, Y. Lu, J. Liu, B. Guo, P. Xiao, J.-J. Lee, X.-Q. Yang, G. Henkelman and J. B. Goodenough, *J. Am. Chem. Soc.*, 2015, 137, 2658-2664.
- 4. H.-W. Lee, R. Y. Wang, M. Pasta, S. Woo Lee, N. Liu and Y. Cui, 2014, 5, 5280.
- 5. Y. Fang, X.-Y. Yu and X. W. Lou, *Angewandte Chemie*, 2017, **129**, 5895-5899.
- H. Li, Y. Ding, H. Ha, Y. Shi, L. Peng, X. Zhang, C. J. Ellison and G. Yu, *Adv. Mater.*, 2017, 29, 1700898.
- J. J. Chen, M. D. Symes, S. C. Fan, M. S. Zheng, H. N. Miras, Q. F. Dong and L. Cronin, *Adv. Mater.*, 2015, 27, 4649-4654.
- 8. H. Yang, T. Song, L. Liu, A. Devadoss, F. Xia, H. Han, H. Park, W. Sigmund, K. Kwon and U. Paik, *The Journal of Physical Chemistry C*, 2013, **117**, 17376-17381.
- S. Wang, H. Li, S. Li, F. Liu, D. Wu, X. Feng and L. Wu, *Chemistry A European Journal*, 2013, 19, 10895-10902.
- W. Fang, H. Zhao, Y. Xie, J. Fang, J. Xu and Z. Chen, ACS Appl. Mat. Interfaces 2015, 7, 13044-13052.
- J. Wang, H. Tang, L. Zhang, H. Ren, R. Yu, Q. Jin, J. Qi, D. Mao, M. Yang, Y. Wang, P. Liu, Y. Zhang, Y. Wen, L. Gu, G. Ma, Z. Su, Z. Tang, H. Zhao and D. Wang, *Nat. Energy*, 2016, 1, 16050.
- 12. L. Mai, Q. Wei, Q. An, X. Tian, Y. Zhao, X. Xu, L. Xu, L. Chang and Q. Zhang, *Adv. Mater.*, 2013, **25**, 2969-2973.
- 13. S. Lee, Y. Cho, H.-K. Song, K. T. Lee and J. Cho, *Angew. Chem. Int. Ed.*, 2012, **51**, 8748-8752.
- 14. X. Gao, G. Li, Y. Xu, Z. Hong, C. Liang and Z. Lin, *Angew. Chem. Int. Ed.*, 2015, **54**, 14331-14335.