Supporting Information

Oxygen Vacancy on TiO₂ Promoted the Activity and Stability of Supported Pd Nanoparticles for Oxygen Reduction Reaction

Jing Li,^{a,b} Hu Zhou,^a Han Zhuo,^a Zhongzhe Wei, ^a Guilin Zhuang, ^a Xing Zhong, ^a Shengwei Deng, ^a and Jianguo Wang^{a,*}

a. Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang

University of Technology, Hangzhou, 310032, PR China

b. College of Chemistry & Chemical Engineering, Binzhou University, Binzhou,

256603, PR China

E-mail: jgw@zjut.edu.cn

Experimental Section

1. Preparation of TiO_2 - V_0 (700) and TiO_2 - V_0 (900)

The as-prepared TiO₂(B) nanosheets were annealed at 700 °C or 900 °C (heating rate of 2 °C min⁻¹) for 3 h under flowing Ar atmosphere in a horizontal quartz tube furnace. The obtained samples at 700 °C and 900 °C were denoted as TiO_2 -V₀(700) and TiO_2 -V₀(900), respectively.

2. Preparation of 10 wt% Pd/ TiO_2 -V₀ (700) and 10 wt% TiO_2 -V₀ (900) catalysts

The 10 wt% Pd/ TiO₂-V_O (700) catalyst was prepared by pyrolyzing a mixture of 11.6 mg Pd(acac)₂ and 40 mg TiO₂-V_O (700), followed by fully grounding the mixture in an agate mortar. Pyrolysis was carried out at 300 °C (heating rate of 3 °C min⁻¹) for 3 h under flowing Ar gas. For comparison, 10 wt% Pd/TiO₂-V_O (900) was prepared as the same procedure above.

3. Preparation of 5 wt%Pd/TiO₂-V_O and 20 wt%TiO₂-V_O catalysts

The 5 wt% Pd/TiO₂-V_O was prepared by pyrolyzing a mixture of 5.8 mg Pd(acac)₂ and 40 mg TiO₂-V_O obtained via Ar treatment at 800 ° C, followed by fully grounding the mixture in an agate mortar. Pyrolysis was carried out at 300 °C (heating rate of 3 °C min⁻¹) for 3 h under flowing Ar gas. For comparison, 20 wt% Pd/TiO₂-V_O was prepared as the same procedure above.

Supplementary Results

Fig. S1 TEM images of (a)TiO₂(B), (b) TiO₂-V₀, (c) Pd/TiO₂ and (d) Pd/P25 with scale bars of 50 nm.

Fig. S2 TGA of Pd(acac)₂

Fig. S3 XRD pattern of TiO₂(B)

Fig. S4 XPS results of catalysts. (a) Survey spectrum of Pd/TiO₂-V_O; (b)Ti 2p, (c) O 1s and (d) Pd 3d XPS high-resolution spectra of Pd/P25.

Fig. S6 O 1s high-resolution XPS spectra of TiO_2 - V_0 (700), TiO_2 - V_0 (800) and TiO_2 - V_0 (900).

Fig. S7 Electrochemical properties of catalysts. (a) Cyclic voltammetry curves of Pd/TiO₂-V_O, Pd/TiO₂ and Pd/P25 catalysts in O₂-saturated 0.1 M KOH solution, scan rate 100 mV s⁻¹. (b) Polarization curves of Pd/TiO₂-V_O and Pd/TiO₂, Pd/P25, Pt/C catalysts, rotation speeds 1600 rpm, scan rate 20 mV s⁻¹. LSV curves obtained at different rotation speeds (400-2025 rpm) in 0.1 M KOH solution for (c) Pd/TiO₂ and (d) Pd/P25. The insets in Fig. S5c and Fig. S5d show the Koutechy-Levich plots and the numbers of electron transfer calculated from K-L analysis of Pd/TiO₂-V_O (inset: calculated kinetic current densities on the electrodes of Pt/C and Pd/TiO₂-V_O. (f) RRDE measurements (1600 rpm) of TiO₂-V_O and Pd/TiO₂-V_O.(g) Peroxide percentage of TiO₂-V_O and Pd/TiO₂-V_O. (h) Nyquist plot of EIS for ORR on Pd/P25, Pd/TiO₂ and Pd/TiO₂-V_O electrodes in 0.1 M KOH at open circuit voltage (inset: the corresponding equivalent circuit diagram of Nyquist plot of Pd/TiO₂-V_O. Rs: an electrolyte resistance, Rct: a charge transfer resistance, CPE: a constant phase element).

Fig. S8 Polarization curves of different catalysts with rotation speed of 1600 rpm and scan rate of 20 mV s⁻¹ (a) Pt/C, 10 wt% Pd/TiO₂-V₀ (700), 10 wt% Pd/TiO₂-V₀ (800) and 10 wt% Pd/TiO₂-V₀ (900). (b) Pt/C, 5 wt% Pd/TiO₂-V₀ (800), 10 wt% Pd/TiO₂-V₀ (800) and 20 wt% Pd/TiO₂-V₀ (800).

Fig. S9 Optimized structures and adsorption energies of OH adsorbed on (a) Pd_4/TiO_2 , (b) Pd_4/TiO_2 -V_O, (c) Pd/TiO_2 and (d) Pd/TiO_2 -V_O.

Fig. S10 The PDOS of Pd_4 over TiO_2 and TiO_2 -V₀.

Table S1 V_0 content of TiO₂- V_0 (700), TiO₂- V_0 (800) and TiO₂- V_0 (900) obtained from XPS analysis.

sample	V_O content wt %		
$TiO_2-V_O(700)$	12.4		
$TiO_2-V_0(800)$	14.6		
TiO ₂ -V _O (900)	19.8		

Table S2 Pd content of Pd/P25, Pd/TiO₂ and Pd/TiO₂-V_O obtained from XPS analysis.

sample	Pd content wt %		
Pd/P25	9.56		
Pd/TiO ₂	9.38		
Pd/TiO_2-V_O	9.50		

Table S3 Comparison of the ORR activity in 0.1 M KOH of the 10 wt% Pd/TiO_2-V_0 with that of some

Catalyst	Pd	Support	Rotation	Onset	Half-wave	Reference
	loading		speed	potential	potential	
	(wt %)		(rpm)	(v VS RHE)	(v VS RHE)	
Pd/TiO ₂ -V _O	10	TiO ₂ -V ₀	1600	0.98	0.83	This work
Pd/TiO _{2-X}	25	TiO _{2-X}	2000	0.94	0.80	ACS Appl. Mater. Interfaces
						2016,8,27654
Pd/TiO _{2-X} : N	25	TiO _{2-X} : N	2000	0.94	0.81	ACS Appl. Mater. Interfaces
						2016,8,27654
Pd ₃ Pb/TiO ₂	5	TiO ₂	2500	0.98	0.85	J. Appl. Electrochem.
						(2016) 46:745
Ni@Pd ₃ /C	17	С	1600	0.98	0.86	J. Mater. Chem. A
						2017, 5,9233
$Au_{10}Pd_{40}Co_{50}$	46	/	1600	-	0.83	Nat. Commun.
						2014, 5 , 5185

recently reported Pd-based catalysts.