Hexagonal Nanoplates of High-quality γ-Gallium Oxide: Controlled Synthesis and Good Heterogeneous Catalytic Performance for Thiophenes**

Zun Yang, Le Xin Song,* Ya Qian Wang, Mao Mao Ruan, Yue Teng, Juan Xia, Jun Yang, Shan Shan Chen and Fang Wang

*University of Science and Technology of China, Hefei 230026, China E-mail: <u>solexin@ustc.edu.cn;</u>

10

A list of the contents for all the Supporting Information

Pages	Contents
1	A table of contents.
2	Experimental Section
3	Figure S1. The size distribution of the γ -Ga ₂ O ₃ -np.
4	Figure S2. The addition of small amounts of POM into a GaCl ₃ solution leads to a quick change from turbid to
	transparent.
5	Figure S3. The NMR spectra of the coordination system and binding system.
6	Figure S4. The Raman spectra of the POM and TOG.
7	Figure S5. The UV-Vis spectra and Job's plots of the coordination system and binding systems.
8	Figure S6. The XRD pattern and FE-SEM image of the GaOOH sample obtained when POM was completely
	substituted by PVP.
9	Figure S7. The FT-IR spectra of PVP and the PVP-GaCl ₃ , and the ion-dipole interaction between PVP and Ga ³⁺ .
10	Figure S8. TG profiles and E_a values of TOG and PVP-TOG.
11	Figure S9. The XRD patterns and FE-SEM images of the products obtained using the same conditions as Figure 1b
	when urea was substituted by NaOH and ammonia to adjust the pH.
12	Figure S10. The XRD patterns and FE-SEM images of the γ -Ga ₂ O ₃ samples obtained using the same conditions as
	Figure 1b at different temperatures.
13	Figure S11. The XRD patterns and FE-SEM images of the samples obtained using the same conditions as Figure 1b but
	with different ligands.
14	Figure S12. The XRD pattern and FE-SEM image of the γ -Ga ₂ O ₃ sample obtained using the same conditions as Figure
	1b when POM was substituted by CA with a reaction time of 6 h.
15	Figure S13. The XRD pattern and FE-SEM images of the sample obtained using the same conditions as Figure 1b when
	the molar ratio of POM to GaCl ₃ is 1.5:1.
16	Figure S14. The XRD patterns and FE-SEM images of the sample obtained using the same conditions as Figure 1b
	when the PVP was substituted by PVC and β -CD.
17	Figure S15. Thiophene conversions of the γ -Ga ₂ O ₃ -np with H ₂ O ₂ in <i>n</i> -octane at different conditions.
18	Figure S16. The XRD pattern and FE-SEM image of the β -Ga ₂ O ₃ -np sample obtained by sintering the γ -Ga ₂ O ₃ -np at
	1073 K for 3 h in air.
19	Figure S17. The N ₂ adsorption-desorption isotherms and pore size distributions of the β -Ga ₂ O ₃ -np, γ -Ga ₂ O ₃ -np and
	γ -Ga ₂ O ₃ -mf.
20	Figure S18. UV-Vis spectra of TP in organic phases, the bar diagram depicting the ζ values of the γ -Ga ₂ O ₃ -np in the
	first five runs and FE-SEM image of the used γ -Ga ₂ O ₃ -np after the 5th run.
21	Figure S19. Ga 3d XPS spectra of the γ -Ga ₂ O ₃ -np samples impregnated with H ₂ O and aqueous H ₂ O ₂ .
22	Figure S20. HPLC analysis of TP analogs and FT-IR spectra of the γ -Ga ₂ O ₃ -np with and without TP-dioxide.
23	Figure S21. UV-Vis spectra of residual TP analogs in organic phases.
24	Table S1. The ζ values of different catalysts in the oxidative desulfurization.

Experimental Section

Preparation of the Ga₂O₃ materials: In the preparation experiments, all the reagents were analytical grade and were used without further purification. The γ-Ga₂O₃-np was synthesized by a facile hydrothermal process: Initially, metal gallium (0.05 g, 0.7 mmol) was dissolved in HCl (30 mL, 0.4 M) to form an aqueous solution of Ga³⁺ ions. Then, 0.50 g of urea ${}^{5}(8.3 \text{ mmol})$ and 0.39 g of POM (2.1 mmol, the mole ratio of GaCl₃ to POM, 1:3) and 78 mg of PVP (k-30, 0.7 mmol PVP units) were added to the solution under vigorous stirring for 0.5 h at room temperature. Subsequently, this solution was transferred into a Teflon-lined stainless steel autoclave (50 mL). The autoclave was maintained at 453 K for 3 h, and then cooled gradually to ambient temperature. Finally, a white product (γ-Ga₂O₃-np, 65 mg, 99%) was obtained by filtration and washing several times with distilled water and absolute ethyl alcohol, then dried at vacuum at 373 K for 10 h. The 10 γ-Ga₂O₃-mf was prepared by the same method as the γ-Ga₂O₃-np when PVP was absent. All other samples were synthesized using a similar procedure by varying reaction parameters, including concentration, temperature, and reaction time. The β-Ga₂O₃-np and β-Ga₂O₃-mf was obtained by sintering the γ-Ga₂O₃-np and γ-Ga₂O₃-mf at 1073 K for 3 h in air, respectively.

Preparation of the PVP-Ga³⁺ and PVP-TOG: 20 mL aqueous solution containing 0.5 mmol PVP units (55.5 mg) and 0.5 ¹⁵ mmol GaCl₃ (88.3 mg, the molar ratio of GaCl₃ to PVP, 1:1) was stirred for 3 h at 333 K in a round-bottom flask using oil bath heating; then, water was removed from the solution by rotary evaporation below 323 K. Finally, the PVP-Ga³⁺ was obtained after drying to constant weight at 373 K for 10 h. The PVP-TOG was gained by the similar way by mixing 0.5 mmol PVP, 0.5 mmol GaCl₃ and 1.5 mmol POM (276 mg), and stirring for 9 h at 333 K.

Catalytic experiments: A 10.0 mL solution of TP $(1.60 \times 10^{-4} \text{ mol} \cdot \text{dm}^{-3} \text{ in } n$ -octane) was placed in a three neck round ²⁰ bottom flask fitted with a thermometer, a reflux condenser and an inlet for the addition of a 10.0 mL solution of H₂O₂ $(9.70 \times 10^{-3} \text{ mol} \cdot \text{dm}^{-3} \text{ in water})$. Initially, the mixed solutions of TP and H₂O₂ were heated to 343 K. Subsequently, Ga₂O₃ (0.08 mmol, 15 mg) was added to the mixed solutions. Then, the solutions were vigorously stirred for 2 h at this temperature. Finally, the organic phase was separated from the aqueous phase by centrifugation and analyzed using UV-Vis spectrophotometer to determine the content of TP in the organic phase. The oxidative desulfurization of TP ²⁵ derivatives were conducted in the similar conditions as the TP. The catalyst was recycled by washing several times with absolute ethyl alcohol, separating and drying at vacuum at 373 K for 10 h.

Material characterization: X-ray diffraction (XRD) measurements were performed on a Philips X'Pert Pro X-ray diffractometer using a monochromatized Cu K α radiation source (40 kV, 40 mA) with a wavelength of 0.1542 nm and analyzed in the range $10^{\circ} \le 2\theta \le 80^{\circ}$. Field emission scanning electron microscope (FE-SEM) images were recorded by

- ³⁰ using a Supra 40 operated at 5 kV. The typical high resolution transmission electron microscopy (HR-TEM) images and selected area electron diffraction (SAED) patterns were taken on a JEF 2100F field-emission transmission electron microscope performing at 200 kV. Thermogravimetry (TG) was performed on a DTGA-60H thermogravimetric analyzer under a nitrogen atmosphere with a gas flow of 25 mL·min⁻¹. Fourier transform infrared (FT-IR) spectra were obtained on a Bruker Equinox 55 spectrometer with KBr pellets in the range of 400~4000 cm⁻¹ with a resolution of less than 0.09
- ³⁵ cm⁻¹. Raman spectra were recorded with a Renishaw InVia Raman Microscope at room temperature with 532 nm laser excitation in the range 100-1800 m⁻¹, with a resolution of 0.6 cm⁻¹. Nitrogen adsorption/desorption isotherms were obtained using Micromeritics ASAP-2000 Surface Area and Porosimetry System at 77 K. The ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 300 NMR spectrometer at 300 MHz at ambient temperature unless otherwise stated. UV-Vis spectra were done with a Shimadzu UV 3600 spectrometer in the range of
- ⁴⁰ 200~600 nm. X-ray photoelectron spectroscopy (XPS) measurements were done using an ESCALAB 250 spectrometer with Al K α radiation (1486.6 eV) in ultra-high vacuum (2.00×10⁻⁹ Torr). And all of the values of binding energy were referenced to C1s peak (284.8 eV) with an energy resolution of 0.16 eV. High-performance liquid chromatography (HPLC) analysis was performed on Aglient Technologies 1260 (250×4.6 mm, 5 µm; 303 K; methanol/water [80/20, ν/ν]; flow rate: 1.0 mL·min⁻¹). The conductivity experiments were conducted in a Leici DDSJ-308 conductivity meter

45 (Shanghai Leici Instrument factory) with automatic temperature compensation at 298 K and automatic calibration.

Figure S1. The size distribution of the γ -Ga₂O₃-np.

Figure S2. The addition of small amounts of POM into a GaCl₃ solution (stirring for 2 h at 333K) leads to a quick change from turbid to transparent.

Figure S3. A) The ¹³C NMR spectra of POM and its complex of Ga³⁺ (TOG); B) The ¹H NMR spectra of PVP and the PVP-GaCl₃: ¹H NMR (300 MHz, D₂O, 298 K, ppm) of free PVP: δ 3.669 (CHN), 3.248 (CH₂N), 2.316 (CH₂CO), 1.966 (CH₂CCO), 1.594 (CH₂CH). ¹H NMR (300 MHz, D₂O, 298 K, ppm) of PVP-GaCl₃: δ 3.620 (CHN), 3.222 (CH₂N), 2.293 (CH₂CO), 1.935 (CH₂CCO), 1.561 (CH₂CH).

The coordination interaction between Ga^{3+} and Ox^{2-} ions was confirmed by Raman analysis. The Raman curve of the TOG complex shows a characteristic peak at 573 cm⁻¹ due to the Ga-O stretching vibration mode of Ga(III)-COO⁻ complex,¹ which is different from the GaO vibration mode of γ -Ga₂O₃.² The peaks with wavenumbers lower than 400 cm⁻¹ are due to the deformation ¹⁰ vibration modes of CCO, OGaO and COGa.¹

Figure S4. The Raman spectra of the POM (A) and TOG (B).

15 References

- [1] D R. E. Hester, R. A. Plane, Inorg. Chem. 1964, 3, 513.
- [2] H. Seshadri, M. Cheralathan, P. Sinha, Res. Chem. Intermediat. 2013, 39, 991.

20

Figure S5. (A, C) The UV-Vis spectra and Job's plot of the solutions (total moles, TM) of GaCl₃ and POM (the R is a molar ratio of GaCl₃ to the TM). (B) The UV-Vis spectra of PVP (2.50×10^{-3} M) and ⁵ PVP-GaCl₃ (2.50×10^{-3} M). (D) The Job's plots ($\Delta \kappa$ represents the decrease in electric conductivity) of the solutions of GaCl₃ and its complex upon addition of PVP: a) PVP and GaCl₃ (total moles, TM, the R is a molar ratio of GaCl₃ to the TM); b) PVP and TOG (total moles, TM, the R is a molar ratio of GaCl₃ to the TM); b) PVP and TOG (total moles, TM, the R is a molar ratio of TOG to the TM). (E, F) An estimation of the formation rate of the complex based on its concentration reflected by the absorption peak of the Ga-O coordination bonds at 257.6 nm. The ¹⁰ UV-Vis spectra of the solutions of GaCl₃ (2.50×10^{-3} M) with POM (7.50×10^{-3} M) in the absence (E) and presence (F) of PVP (78 mg) at different reaction times: a) 120, b) 90, c) 60, d) 30 min. Clearly, the introduction of PVP results in a decrease of the formation rate of the Ga-O coordination bonds.

5

Figure S6. The XRD pattern and FE-SEM image of the GaOOH sample obtained when POM was completely substituted by PVP.

5

Figure S7. (A) The FT-IR spectra of PVP and the PVP-GaCl₃; (B) The ion-dipole interaction between PVP and Ga³⁺.

Figure S8. TG profiles and E_a values of TOG and PVP-TOG, a~e represent different heating rates: a) 5, b) 10, c) 15, d) 20, e) 25 K ·min⁻¹, α represents the residual mass fraction (%).

Figure S9. The XRD patterns and FE-SEM images of the products (a mixture of GaOOH and γ -Ga₂O₃) obtained using the same conditions as Figure 1b when urea was substituted by NaOH (a, c) and ammonia (b, d) to adjust the pH.

10

5

10

Figure S10. The XRD patterns and FE-SEM images of the γ -Ga₂O₃ samples obtained using the same conditions as Figure 1b at different temperatures: 433 K (a, c) and 473 K (b, d).

Figure S11. The XRD patterns and FE-SEM images of the samples obtained using the same conditions as Figure 1b but with different ligands: OAD (a, c), MA (b, d), EDA (A1, A2) and EG ₅ (B1, B2).

Figure S12. The XRD pattern and FE-SEM image of the γ -Ga₂O₃ sample obtained using the same conditions as Figure 1b when POM was substituted by CA with a reaction time of 6 h.

Figure S13. The XRD pattern and FE-SEM images of the sample obtained using the same conditions as Figure 1b when the molar ratio of POM to GaCl₃ is 1.5:1.

Figure S14. The XRD patterns and FE-SEM images of the sample obtained using the same conditions as Figure 1b when the PVP was substituted by PVC (a, c) and β -CD (b, d).

Figure S15. Thiophene conversions of the γ -Ga₂O₃-np with H₂O₂ in *n*-octane: (A) at 343 K using the catalyst amount of 15 mg with different times (0, 30, 60, 90, 120, 150, 180 min); (B) at different temperatures (313, 323, 333, 343, 353 and 363 K) using the catalyst amount of 15 mg for 2 h, and (C) ^s at 343 K using different catalyst amounts (3, 6, 9, 12, 15 and 18 mg) for 2 h.

Figure S16. The XRD pattern and FE-SEM image of the β -Ga₂O₃-np sample obtained by sintering the γ -Ga₂O₃-np at 1073 K for 3 h in air.

Figure S17. The N₂ adsorption-desorption isotherms and pore size distributions (see the insets) of the β -Ga₂O₃-np (A), γ -Ga₂O₃-np (B) and γ -Ga₂O₃-mf (C).

Figure S18. (A) UV-Vis spectra of TP in organic phase under different systems in *n*-octane: (a) TP, (b) TP + H₂O₂, (c) TP + H₂O₂ + β -Ga₂O₃-mf; (B) (a) the bar diagram depicting the ζ values of the ¹⁰ γ -Ga₂O₃-np in the first five runs, and (b) FE-SEM image of the used γ -Ga₂O₃-np after the 5th run.

15

Figure S19. Ga 3d XPS spectra of the γ -Ga₂O₃-np samples impregnated with H₂O (A) and aqueous H₂O₂ (B, 9.70×10⁻³ mol·dm⁻³).

Figure S20 shows that there is only a peak at 2.99 min of retention time. It is ascribed to either TP-oxide or TP-dioxide because the peak of free TP occurred at 5.76 min of retention time. The FT-IR analysis displays that there are two strong bands at 1155 cm⁻¹ and 1247 cm⁻¹, which can be attributed to the symmetric and asymmetric vibration modes of S-O in the TP-dioxide, ¹⁰ respectively.^{1~3}

Figure S20. HPLC analysis of TP (a) and TP-dioxide (b), and FT-IR spectra of the γ -Ga₂O₃-np before (A) and after (B) the catalytic oxidation of TP. The strong absorption peak in 1050~1100 cm⁻¹ are due to a characteristic vibration band of γ -Ga₂O₃.⁴

References

- [1] J. Nakayama, H. Nagasawa, Y. Sugihara, A. Ishii, J. Am. Chem. Soc. 1997, 119, 9077.
- [2] A. Nisar, Y. Lu, J. Zhuang, X. Wang, Angew. Chem. Int. Edit. 2011, 123, 3245.
- 20 [3] S. Otsuki, T. Nonaka, N. Takashima, W. Qian, A. Ishihara, T. Imai, T. Kabe, Energy Fuels 2000, 14, 1232.
- [4] H. Seshadri, M. Cheralathan, P. K. Sinha, Res. Chem. Intermediat. 2012, 39, 991.

15

Figure S21. UV-Vis spectra of residual 2-MTP (A), 3-MTP (B), BTP (C) and DBTP (D) in organic phase under different systems in *n*-octane (a); with H₂O₂ in *n*-octane (b); and with H₂O₂ and γ -Ga₂O₃-np in *n*-octane (c).

	t/min	T/K	$\mathbf{M}^{a} \mathbf{g}/\mathbf{L}$	Solvents	ζ/%					D.f
Catalysts					ТР	2-MTP	3-MTP	ВТР	DBTP	Kei
γ-Ga ₂ O ₃	120	343	0.75	water	66.3	45.5	58.7	76.2	80.6	This work
MoO ₃	240	353	0.6	water	30	-	-	-	-	1
AMT^b	120	353	0.16	water	33	45	13	-	-	2
Mo/Al ₂ O ₃	60	333	1.36	ACf	0.2	_	-	64.2	98.7	3
MoO ₃ /Al ₂ O ₃	60	333	3.3	AC	-	-	-	-	70.5	4
Sn/Al ₂ O ₃	30	333	-	DMF	62	-	-	-	60	5
Fe/Al ₂ O ₃	30	333	_	DMF	57	_	-	-	55	5
Ti-beta ^c	300	343	3.2	water	-	-	_	64.3	25	6
Mo-LDH ^d	180	313	-	AC	-	-	_	45	60.5	7
CeO ₂	30	303	3.3	[C ₈ mim]BF ₄ ^g	-	-	-	-	38.5	8
ZrO_2	120	333	2	AC	-	-	_	-	17	9
V_2O_5	120	333	2	AC	-	-	-	-	37	9
WOx/ZrO ₂	180	348	1.3	AC	65	-	_	91	-	10
V-HMS ^e	60	333	-	AC	-	-	_	18	62	11
Mn ₃ O ₄	20	333	-	AC	65	-	_	57	46	12
TiO ₂	60	333	0.5	AC	-	-	_	-	39	13
VOx/TiO ₂	90	333	2	AC	_	_	-	_	67.9	14
CeO ₂ /TiO ₂	300	_	1	water	-	_	-	90	-	15
CeO ₂	300	-	1	water	-	-	_	< 40	-	15
TiO ₂	300	-	1	water	-	-	_	< 45	-	15
Ni-CuO/BiVO ₄	180	283	1	AC	94	-	-	-	-	16
Ni/BiVO ₄	180	283	1	AC	43	-	-	-	-	16
CuO/BiVO ₄	180	283	1	AC	42	-	-	-	-	16
BiVO ₄	180	283	1	AC	40	-	-	-	-	16

Table S1. The ζ values of different catalysts in the oxidative desulfurization.

^{*a*} Amount of catalysts; ^{*b*} Ammonium molybdate tetrahydrate; ^{*c*} Ti-containing molecular sieve; ^{*d*} Mo-containing layered double hydroxide; ^{*e*} V-containing hexagonal mesoporous silica; ^{*f*} Acetonitrile; ^{*g*} 1-*n*-octyl-3-methylimidazolium tetrafluoroborate.

5 References

- [1] L. X. Song, M. Wang, S. Z. Pan, J. Yang, J. Chen, J. Yang, J. Mater. Chem. 2011, 21, 7982.
- [2] L. X. Song, M. Wang, Z. Dang, F. Y. Du, J. Phys. Chem. B 2010, 114, 3404.
- [3] J. L. García-Gutiérrez, G. A. Fuentes, M. E. Hernández-Terán, F. Murrieta, J. Navarrete, F. Jiménez-Cruz, *Appl. Catal. A* 2006, *305*, 15.
- [4] J. L. García-Gutiérrez, G. A. Fuentes, M. E. Hernández-Terán, P. Garcia, F. Murrieta-Guevara, F. Jiménez-Cruz, *Appl. Catal. A* 2008, 334, 366.
- [5] W. A. W. A. Bakar, R. Ali, A. A. A. Kadir, W. N. A. W. Mokhtar, Fuel Process. Technol. 2012, 101, 78.

- [6] V. Hulea, F. Fajula, J. Bousquet, J. Catal. 2001, 198, 179.
- [7] A.-L. Maciuca, C.-E. Ciocan, E. Dumitriu, F. Fajula, V. Hulea, Catal. Today 2008, 138, 33.
- [8] M. Zhang, W. Zhu, S. Xun, H. Li, Q. Gu, Z. Zhao, Q. Wang, Chem. Eng. J. 2013, 220, 328.
- [9] L. Fabián-Mijangos, L. Cedeño-Caero, Ind. Eng. Chem. Res. 2010, 50, 2659.
- 5 [10] Z. Hasan, J. Jeon, S. H. Jhung, J. Hazard. Mater. 2012, 205, 216.
- [11] Y. Shiraishi, T. Naito, T. Hirai, Ind. Eng. Chem. Res. 2003, 42, 6034.
- [12] B. Zapata, F. Pedraza, M. A. Valenzuela, Catal. Today 2005, 106, 219.
- [13] U. Arellano, J. Wang, M. Timko, L. Chen, S. P. Carrera, M. Asomoza, O. G. Vargas, M. Llanos, Fuel 2014, 126, 16.
- [14] M. A. Ramos-Luna, L. Cedeño-Caero, Ind. Eng. Chem. Res. 2010, 50, 2641.
- 10 [15] X. Lu, X. Li, J. Qian, N. Miao, C. Yao, Z. Chen, J. Alloy. Compd. 2016, 661, 363.
- [16] F. Lin, Z. Shao, P. Li, Z. Chen, X. Liu, M. Li, B. Zhang, J. Huang, G. Zhu, B. Dong, RSC Adv. 2017, 7, 15053.