Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. TElectronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Support Information

Co₃O₄ functionalized Porous Carbon nanotube Oxygen-Cathode to Promote Li₂O₂ Surface Growth for Improved Cycling Stability in Li-O₂ Batteries

Yin Zhou^{a,b,c}, Zhiyang Lyu^c, Liangjun Wang^d, Wenhao Dong^c, Wenrui Dai^{b,c}, Xinhang Cui^{b,c},

Zhongkai Hao^{b,c}, Min Lai^a and Wei Chen^{bcd}*

^aSchool of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology,

Nanjing 210044, Jiangsu, China

^bNational University of Singapore (Suzhou) Research Institute, Suzhou, 215123, China.

^cDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.

^dDepartment of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore

*Corresponding authors

E-mail: phycw@nus.edu.sg

Figure S1. SEM images of (a): o-CNT; (b): p-CNT; (c1) and (c2): p-CNT/Co₃O₄[M].

Figure S2. XRD patterns of (e): o-CNT; (f): p-CNT; (g): p-CNT/Co₃O₄[M].

Figure S3. TG curve of p-CNT/Co₃O₄[L], p-CNT/Co₃O₄[M] and p-CNT/Co₃O₄[H].

Figure S4 (a): HAADF-STEM image and EDX maps (of the C, Co, and O elements and of all three elements in the composite) of the p-CNT@ $Co_3O_4[M]$ sample; (b) EDX analysis of the p-CNT/ $Co_3O_4[M]$.

Figure S5. XRD patterns of the p-CNT/Co₃O₄[M] before discharge, after 1st discharge, and after 5th charge.

Figure S6. RRDE curves of the o-CNT, p-CNT and p-CNT/Co₃O₄[M] catalysts.

We do the rotating ring disk electrode (RRDE) to evaluate the role of Co_3O_4 on the formation of Li_2O_2 , in particularly the oxygen adsorption strength on different cathode catalysts. The RRDE of o-CNT, p-CNT and p-CNT/Co₃O₄[M] were tested to determine the concentration of O_2^- adsorbed on the surface of disk or dissolved in solution. In the RRDE studies, O_2 is firstly reduced at the disk and then dissolved O_2^- in electrolyte is oxidized and detected at the ring. The low ring current of p-CNT/Co₃O₄[M] demonstrated a very small concentration of O_2^- in the electrolyte solution, suggesting that O_2^- is mainly adsorbed on the p-CNT/Co₃O₄[M], leading to surface thin film growth mode. In contrast, the higher ring current of o-CNT and p-CNT indicated that O_2^- is dissolved in solution growth mode. The RRDE results show that the decorated Co_3O_4 surface layer possesses stronger oxygen adsorption strength, and hence lead to the transformation of the discharge product from the toroid-type Li_2O_2 via the solution growth mechanism to the thin film-type Li_2O_2 via the surface growth mechanism.

	and p-CN1/Co ₃ O ₄ [F	l].			
Sample	$S_{BET} (m^2 g^{-1})$	$S_{pore} (cm^3 g^{-1})$			
o-CNT	131.8	0.26			
p-CNT	551.7	0.90			
p-CNT/Co ₃ O ₄ [L]	402.9	0.80			
p-CNT/Co ₃ O ₄ [M]	355.7	0.64			
p-CNT/Co ₃ O ₄ [H]	167.0	0.33			

Table S1. BET surface area and pore volume of o-CNT, p-CNT, p-CNT/Co₃O₄[L], p-CNT/Co₃O₄[M] and p-CNT/Co₃O₄[H].

Samples	$\boldsymbol{R}_{\mathrm{o}}(\Omega)$		$\boldsymbol{R}_{\mathrm{ct}}(\Omega)$	
	Initial	5 th charge	Initial	5 th charge
o-CNT	47.0	77.9	96.2	229.4
p-CNT	44.7	71.4	55.5	194.1
p-CNT/Co ₃ O ₄ [M]	41.7	56.1	74.3	100.5

Table S2. Fitted values for equivalent circuit elements by simulation of EIS data in Figure 7.