Electronic Supplementary Information

Experimental Section

Materials: NH₄F and urea were bought from Beijing Chemical Works. Ni(NO₃)₂·6H₂O and H₂PtCl₆·6H₂O were purchased from Aladdin Ltd. (Shanghai, China). Pt/C (20 wt% Pt) was provided by Alfa Aesar (China) Chem. Co. Ltd. Nafion (5 wt%) was bought from Sigma-Aldrich Chemical Reagent Co., Ltd. All reagents were used as received without further purification. Ti mesh was purchased from Phychemi Hong Kong Company Limited. Pure water was utilized to prepare all solutions.

Preparation of Ni(OH)₂ **NS/Ti:** We chose Ti mesh as the substrate due to its excellent chemical and electrochemical stability, acceptable electronic conductivity, open structure and ease of fabrication into electrodes.¹ Ti mesh was cleaned by sonication sequentially in concentrated HCl, ethanol and water for several times to remove the surface impurities. Ni(OH)₂ NS/Ti was made as follows. In brief, 1.308 g Ni(NO₃)₂·6H₂O, 1.201 g urea, and 0.296 g NH₄F were dissolved in 80 mL ultrapure water. Then the mixture solution and the pre-treated Ti mesh (2 cm × 3 cm) were transferred into a 100 mL Teflon-lined stainless-steel autoclave and maintained at 373 K for 6 h. After the autoclave cooled down naturally, the resulting Ni(OH)₂ NS/Ti was taken out and washed with ultrapure water. The loading of Ni(OH)₂ on Ti mesh is 1.49 mg cm⁻².

Preparation of Ni(OH)₂-**PtO**₂ **NS/Ti:** Ni(OH)₂-PtO₂ NS/Ti was prepared as follows. H₂PtCl₆·6H₂O (2 mg) was dissolved in 25 mL water under vigorous stirring for 5 min. Ni(OH)₂ NS/Ti and H₂PtCl₆·6H₂O aqueous solution were all transferred into a 50 mL Teflon-lined stainless autoclave and maintained at 373 K for 4 h. After cooled down to room the temperature, the Ni(OH)₂-PtO₂ NS/Ti was taken out and washed with ultrapure water thoroughly before vacuum dried. The loading of Ni(OH)₂-PtO₂ on Ti mesh is 1.48 mg cm⁻². **Preparation of PtO₂/Ti:** H₂PtCl₆·6H₂O (70 mmol) was dissolved in ultrapure water (30 mL). Then this pale yellow solution was transferred into a 50 mL Teflon-lined stainless-steel autoclave, which was sealed and maintained at 453 K for 24 h. After the sample cooled down to ambient temperature, PtO₂ was collected by centrifugation and washed with ultrapure water. To prepare PtO₂ loaded electrode, 20 mg PtO₂ and 10 μ L 5 wt% Nafion solution were dispersed in 1 mL 1:1 v water/ethanol solvent by 30-min sonication to form an ink finally. Then 74 μ L catalyst ink was loaded on Ti mesh with a catalyst loading of 1.48 mg cm⁻².

Characterizations: XRD data was performed using a LabX XRD-6100 X-ray diffractometer Cu Kα radiation (40 kV, 30 mA) of wavelength 0.154 nm (SHIMADZU, Japan). SEM images were collected from the tungsten lamp-equipped SU3500 scanning electron microscope at an accelerating voltage of 20 kV (HITACHI, Japan). TEM images were collected on a Zeiss Libra 200FE transmission electron microscope operated at 200 kV. XPS measurements were performed using an ESCALABMK II X-ray photoelectron spectrometer with the exciting source of Mg. The ICP-MS analysis was performed on ThermoScientific iCAP6300.

Electrochemical measurements: All electrochemical measurements were performed with a CHI 660E electrochemical analyzer (Chenhua, Shanghai) in a conventional three electrode system, using Ni(OH)₂-PtO₂ NS/Ti as working electrode, a graphite rod as counter electrode and Hg/HgO as reference electrode. Polarization curves were obtained using LSV with a scan rate of 5 mV s⁻¹ and no activation was used before recording the polarization curves. Given that as-measured reaction currents do not directly reflect the intrinsic behavior of catalysts due to the effect of ohmic resistance, an *iR* correction was applied to all LSV curves for further analysis, and all potentials were reported on a reversible hydrogen electrode (RHE) scale unless specifically stated. The potentials were calibrated to RHE, using the following equation: E (RHE) = E (Hg/HgO) + (0.098 + 0.059 pH) V.

Calculation details: Spin-polarized density functional theory calculations were performed using the Vienna ab initio simulation package (VASP).²⁻⁴ We used the PBE functional for the exchange-correlation energy⁵ and projector augmented wave (PAW)

potentials.^{6,7} The kinetic energy cutoff was set to 450 eV. The ionic relaxation was performed until the force on each atom is less than 0.02 eV/Å. The k-points meshes were $6 \times 6 \times 1$ with Monkhorst-Pack method.⁸ The simulations were performed based on a PtO₂(111) slab model, a Ni(OH)₂(001) slab model and Ni(OH)₂/PtO₂ interface with one PtO₂ unit on the Ni(OH)₂ substrate. To minimize the undesired interactions between images, a vacuum of at least 10 Å was considered along the z axis. The climbing image nudged elastic band (CNEB)⁹ method was used to examine the energy profiles along selected pathways for H₂O dissociation.

The ΔG_{H^*} was calculated as follows, which is proposed by Norskov and coworkers¹⁰:

$$\Delta G_{H*} = E_{total} - E_{sur} - E_{H}^2/2 + \Delta E_{ZPE} - T\Delta S$$

where E_{total} is the total energy for the adsorption state, E_{sur} is the energy of pure surface, E_{H^2} is the energy of H_2 in gas phase, ΔE_{ZPE} is the zero-point energy change and ΔS is the entropy change.

Fig. S1. SEM image of bare Ti mesh.

Fig. S2. Cross-section SEM image of Ni(OH)₂-PtO₂ NS/Ti.

Fig. S3. SEM and EDX elemental mapping images of Pt, Ni and O for Ni(OH)₂-PtO₂ NS/Ti.

Fig. S4. LSV curves for bare Ti mesh, $Ni(OH)_2 NS/Ti$, $Ni(OH)_2$ -PtO₂ NS/Ti, PtO₂/Ti, and Pt/C on Ti mesh with a scan rate of 5 mV s⁻¹ for the HER in 1.0 M KOH.

Catalyst	j (mA cm ⁻²)	η (mV)	Pt content (wt%)	Electrolyte	Ref.
Ni(OH) ₂ -PtO ₂ NS/Ti	4	31.4	5.1	0.1 M KOH	This work
		44.8		1.0 M KOH	
Pt NWs/SL-	4	57	- 38	0.1 M KOH	- 11
Ni(OH) ₂		85		1.0 M KOH	
Pt(110)/Ni(OH) ₂	4	110	Pt electrode	0.1 M KOH	12
Pt ₃ Ni frames/Ni(OH) ₂ /C	4	59	20	0.1 M KOH	13
Pt-Ni/C	4	40	25	0.1 M KOH	14
PtCuNi/CNF@CF	4	145	1.8	1.0 M KOH	15
Ni ₃ N/Pt	4	37	15	1.0 M KOH	16
<i>hcp</i> -Pt-Ni	4	45	39.6	0.1 M KOH	17
Pt ₃ Ni ₂ NWs-S/C	4	60	81.6	0.1 M KOH	18
Pt(111)-Co(OH) ₂	3	196	Pt electrode	0.1 M	19
				KOH/LiOH	
Pt@2D-Ni(OH) ₂	4	87	43	0.1 M KOH	20
Ni(OH) ₂ /Pt	5	75	Pt electrode	0.1 KOH	21

Table S1. Comparison of HER performance for Ni(OH)₂-PtO₂ NS/Ti with other Ptbased electrocatalysts in alkaline media.

Fig. S5. SEM images of Ni(OH)₂-PtO₂ NS/Ti after HER electrolysis in 0.1 M KOH.

Fig. S6. XPS spectra in the (a) Ni 2p, (b) Pt 4f and (c) O 1s regions for $Ni(OH)_2$ -PtO₂ after HER electrolysis in 0.1 M KOH.

Fig. S7. The amount of gas theoretically calculated and experimentally measured vs. time for Ni(OH)₂-PtO₂ NS/Ti in 0.1 M KOH.

References

- 1 H. Cheng and K. Scott, J. Appl. Electrochem., 2006, **36**, 1361-1366.
- 2 G. Kresse and J. Furthmuller, *Comp. Mater. Sci.*, 1996, 6, 15-50.
- G. Kresse and J. Furthmuller, *Phys. Rev. B*, 1996, **54**, 11169-11186.
- 4 G. Kresse and J. Hafner, *Phys. Rev. B*, 1994, **49**, 14251-14269.
- 5 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865-3868.
- 6 G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758-1775.
- 7 P. E. Blochl, *Phys. Rev. B*, 1994, **50**, 17953-17979.
- 8 H. J. Monkhorst and J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188-5192.
- G. Henkelman, B. P. Uberuaga and H. J. Jónsson, *Chem. Phys.* 2000, 113, 9901-9904.
- 10 J. K. Nøskov, T. Bligaard, A. Logadottir, I. R. Kitchin, J. G. Chen, S. Pandelov and U. Stimming, J. Electrochem. Soc., 2005, 152, J23-J26.
- H. Yin, S. Zhao, K. Zhao, A. Muqsit, H. Tang, L. Chang, H. Zhao, Y. Gao and Z. Tang, *Nat. Commun.*, 2015, 6, 6430.
- R. Subbaraman, D. Tripkovic, D. Strmenik, K. C. Chang, M. Uchimura, A. P.
 Paulikas, V. Stamenkovic and N. M. Markovic, *Science*, 2017, 8, 1256-1260.
- C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H. L. Xin, J. D. Snyder, D. Li, J.
 A. Herron, M. Mavrikakis, M. Chi. K. L. More, Y. Li, N. M. Markovic, G. A.
 Somorjai, P. Yang and V. R. Stamekovic, *Science*, 2014, 343, 1339-1343.
- R. Kavian, S. I. Choi, J. Park, T. Liu, H. C. Peng, N. Lu, J. Wang, M. J. Kim, Y. Xia and S. W. Lee, *J. Mater. Chem. A*, 2016, 4, 12392-12397.
- Y. Shen, A. C. Lua, J. Xi and X. Qiu, ACS Appl. Mater. Interfaces, 2016, 8, 3464-3472.
- Y. Wang, L. Chen, X. Yu, Y. Wang, and G. Zheng, *Adv. Energy Mater.*, 2017, 7, 1601390.
- Z. Cao, Q. Chen, J. Zhang, H. Li, Y. Jiang, S. Shen, G. Fu, B. Lu, Z. Xie and L.
 Zheng, *Nat. Commun.*, 2017, 8, 15131.

- 18 P. Wang, X. Zhang, J. Zhang, S. Wan, S. Guo, G. Lu, J. Yao and X. Huang, *Nat. Commun.*, 2017, 8, 14580.
- 19 R. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. P. Greeley, V. R. Stamenkovic and N. M. Markovic, *Nat. Mater.*, 2012, **11**, 550-557.
- L. Wang, Y. Zhu, Z. Zeng, C. Lin, M. Giroux, L. Jiang, Y. Han, J. Greeley, C.
 Wang and J. Jin, *Nano Energy*, 2017, 31, 456-461.
- N. Danilovic, R. Subbaraman, D. Strmenik, K. C. Chang, A. P. Paulikas, V. R. Stamenkovic and N. M. Markovic, *Angew. Chem.*, *Int. Ed.*, 2012, 51, 12495-12498.