Supporting Information

WO₃ Photoanodes with Controllable Bulk and Surface Oxygen Vacancies for Photoelectrochemical Water Oxidation

Jijie Zhang, Xiaoxia Chang, Chengcheng Li, Ang Li, Shanshan Liu, Tuo Wang, and

Jinlong Gong*

Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China

* E-mail: jlgong@tju.edu.cn; FAX: +86-22-87401818

Experimental Section

Materials: Tungstic acid (H₂WO₄, GR, 99.0%) and hydrogen peroxide (H₂O₂, AR, 30%) were purchased from Sinopharm Chemical Reagent Co., Ltd. Polyvinyl alcohol (PVA, 97%) was supplied by Tianjin YuanLi Chemical Technology Co., Ltd. Urea (GR, 99.0%) was supplied by Kermel Chemical Technology Co., Ltd. Acetonitrile (AR, 99.0%), oxalic acid (AR, 98.0%), hydrochloric acid (HCl, 36.5-38.0 wt%), sodium sulfite (GR, 98.0%), and sodium sulfate (Na₂SO₄, GR, 99.0%) were all purchased from Tianjin GuangFu Chemical Research Institute. All the reagents were used without any purification process. High purity water (18.25 MΩ•cm) supplied by a UP Water Purification System was used in the whole experimental processes. FTO substrates (F:SnO₂, 14 Ω per square) were purchased from Nippon Sheet Glass, Japan. And before using, the FTO substrates were ultrasonically cleaned for 30 min each in deionized water, ethanol, and acetone, respectively.

Characterization: X-ray diffraction patterns were recorded with a Bruker D8 Focus operating at 40 kV and 40 mA equipped with a nickel-filtered Cu K α radiation (λ = 1.54056 Å) and operating in a 2 θ range of 20-70 ° at a scan rate of 8 per minute. The morphologies were characterized by field emission scanning electron microscope (FESEM, S-4800). TEM was performed on a JEOL JEM 2100F electron microscope operating at 200 kV. UV–visible reflectance spectra and transmittance spectra of Bibased electrode were obtained on a HITACHI U-4100 spectrophotometer. XPS analysis of the samples was carried out on a Physical Electronics PHI 1600 ESCA system with an Al K α X-ray source (E = 1486.6 eV). The binding energy was calibrated using the C 1s photoelectron peak at 284.6 eV as the reference. The photoluminescence spectra was obtained using a Hitachi F-4600 fluorescence spectrophotometer with excitation of

325 nm light at ambient temperature. Raman spectra was recorded on a DXR Raman Microscope with 532 nm as the excitation wavelength.

Synthesis of pristine WO₃ nanoflakes: WO₃ nanoflakes were synthesized by a modified hydrothermal method. Briefly, a seed solution prepared by dissolving 1.25 g of H₂WO₄ and 0.5 g of poly(vinyl alcohol) (PVA) into 17 mL of H₂O₂ (30 wt %) was spin-coated onto fluorine-doped tin oxide substrates at 1000 rpm, followed by annealing at 500 °C in air for 2 h. Another H₂WO₄ solution was prepared by adding 1.25 g of H₂WO₄ and 17 mL of H₂O₂ (30 wt %) into 25 mL of H₂O and stirred at 95 °C to dissolve. This H₂WO₄ solution was then diluted to 0.05 M for the hydrothermal process. In order to prepared the hydrothermal precursor solution, 3 mL of H₂WO₄ (0.05 M), 0.02 g of oxalic acid, 0.02 g of urea, 12.5 mL of acetonitrile, and 0.5 mL of HCl (6 M) were added into a 50 mL breaker and stirred to clear. An FTO substrate precoated with WO₃ seed was placed into a 50 mL Teflon-lined stainless steel autoclave filled with the as-prepared precursor solution, which was then kept at 180 °C for 2 h.

Synthesis of hydrogen-treated WO₃ nanoflakes (H-WO₃): Hydrogen treatment was carried out in a home built tube furnace system. The calcinated WO₃ nanoflake films were further annealed in hydrogen (60 sccm H_2 flow) at different time in 350 °C for the range of 10-60 minutes.

Synthesis of ozone-treated WO₃ nanoflakes (O-WO₃): Ozone treatment was also carried out in a home built tube furnace system. The calcinated WO₃ nanoflake and hydrogen-treated WO₃ films were further annealed in ozone (40 sccm O₃ flow) at different time in 100 °C for the range of 10-60 minutes.

Synthesis of WO₃ nanoflakes with annealing in hydrogen and then in ozone (HO-

WO₃): The optimized WO₃ nanoflake photoelectrodes were prepared by annealing in hydrogen (60 sccm H_2 flow) in 350 °C for 30 minutes and then in ozone (40 sccm O_3 flow) in 100 °C for 30 minutes.

Photoelectrochemical Measurements: PEC measurements were performed in 0.1 M Na₂SO₄ (pH 6.8) using a standard quartz 3-electrode cell with Pt foil as the counter electrode, Ag/AgCl as the reference electrode and the WO₃ nanoflake phototelectrodes as the working electrode. In order to simulate sunlight, a 300 W xenon lamp (PE300BUV, CERMAX) equipped with an AM 1.5 filter was used as the light source, and the power intensity of the light was calibrated to 100 mW/cm². An electrochemical workstation (IVIUM CompactStat.e20250) was used to measure the current-voltage (I-V) characteristic of the electrode, with a scan rate of 50 mV s⁻¹. We also measure the I-V curves of the three samples under visible light irradiation with wavelength≥420 nm (**Figure S2**). Before the test, the electrode was encapsulated by epoxy and covered with a mask to expose 0.28 cm⁻² surface area to the irradiation.

Detection of the amount of hydrogen and oxygen evolution: To quantitatively determine the amount of H₂ and O₂ produced from the reduction of water, a threeelectrode system was employed. An aqueous Na₂SO₄ (0.1 M, pH 6.8) was used as the electrolyte solution. The sample was irradiated under visible light illumination ($\lambda \ge 420$ nm) (100 mW cm⁻²). The gas collected from the platinum counter electrode was analyzed by an online gas chromatograph (GC2060, Shanghai RuiMin Electronics Group) with a thermal conductivity detector (TCD) using He as the carrier gas. For this purpose, a customer-designed air-tight PEC cell was used and the amount of H₂ and O₂ was measured every 1 h at a constant bias of 1.23 V vs. RHE under visible light illumination ($\lambda \ge 420$ nm).

Calculation of the incident photon to current conversion efficiency (IPCE): IPCE

of the samples was acquired according to the equation:

IPCE (%)=
$$(I/P) \times (1240/\lambda) \times 100$$

Where *I* is photocurrent density at the measurement applied bias, λ is the wavelength, and *P* is the incident light intensity of 100 mW cm⁻² (AM 1.5G).

Calculation of the absorbed photon to current conversion efficiency (APCE):APCE of the samples was obtained according to the equation:

APCE (%)=
$$\varphi_{inj} \times \eta_{cc} = [IPCE/(1-10^{-A_{\lambda}})] \times 100$$

Where φ_{inj} is electron-injection efficiency, η_{cc} is charge collection efficiency, and A_{λ} corresponds to the absorbance of the material at any particular wavelength (λ) as measured through UV-visible spectra.

Calculation of the applied bias photon-to-current efficiency (ABPE): ABPE of the three Bi-based samples was calculated according to the equation:

$$ABPE = I \times (1.23 - V) / P_{light}$$

Where *I* is photocurrent density at the measurement applied bias, *V* is the applied bias (*vs.* RHE), and P_{light} is the incident light intensity of 100 mW cm⁻² (AM 1.5G). In 0.1 M Na₂SO₄ electrolyte, the reversible hydrogen electrode (RHE) potential can be converted from the Ag/AgCl reference electrode as:

 $E_{RHE} = E_{Ag/AgCl} + 0.059 \times pH + E^{o}_{Ag/AgCl}$, where $E^{o}_{Ag/AgCl} = 0.197~V$ at 25 °C

Calculation of the carrier density:

The carrier density is calculated with the following equation:

$N_{\rm d} = (2/e\varepsilon\varepsilon_0) [{\rm d}(1/C^2)/{\rm d}V]^{-1}$

Where N_d is the carrier density, $e = 1.60 \times 10^{-19}$ C is the electron charge, $\varepsilon = 80$ is the dielectric constant of WO₃, $\varepsilon_0 = 8.85 \times 10^{-14}$ F cm⁻¹ is the vacuum permittivity, C is the capacitance of the space charge region, and V is the electrode applied potential.

The efficiency of charge separation in the bulk and on the surface

The photocurrent density arising from PEC performance (J_{PEC}) can be described as following:

$$J_{\rm PEC} = J_{\rm abs} \times \eta_{\rm bulk} \times \eta_{\rm surface}$$

Where J_{abs} is the photocurrent density when completely converting the absorbed photons into current (APCE = 100%). Adding 1.0 M Na₂SO₃ as the electrolyte can largely suppress the surface recombination of charge carriers without influencing the charge separation in the electrode bulk ($\eta_{surface}$ could be regarded as 100%). Therefore, η_{bulk} and $\eta_{surface}$ can be determined as following:

$$\eta_{\text{bulk}} = J_{\text{sulfite}} / J_{\text{abs}}$$

$\eta_{\text{surface}} = J_{\text{water}} / J_{\text{sulfite}}$

where J_{water} and J_{sulfite} is the photocurrent density for PEC water oxidation and sulfite oxidation, respectively. According to the UV-vis absorptance spectrum (Fig. 2d) and the AM 1.5G solar spectrum, assuming APCE = 100%, the J_{abs} of WO₃ sample was calculated to 2.5 mA cm⁻². Because the UV-vis absorptance spectrum of the four samples are similar, the J_{abs} can be estimated as a constant. Therefore, the efficiency of charge separation in the bulk and on the surface of the photoelectrodes can be calculated.

Fig. S1. Cross-sectional FESEM images of HO-WO₃ sample.

Fig. S2. SEM images of (a) WO₃, (b) H-WO₃ and (c) O-WO₃ samples.

Fig. S3. Digital pictures of these samples for (a) pristine WO₃, (b) O-WO₃, (c) H-WO₃, and (d) HO-WO₃.

Fig. S4. Current-potential plots for pristine WO₃, H-WO₃, O-WO₃, and HO-WO₃ under visible light illumination with wavelength \geq 420 nm in a 0.1 M Na₂SO₄ aqueous electrolyte (pH 6.8).

Fig. S5. (a) J-V curves of WO₃, O-WO₃, H-WO₃ and HO-WO₃ samples measured with AM 1.5G illumination (100 mW cm⁻²) for sulfite oxidation. Charge separation efficiency (b) in the bulk (η_{bulk}) and (c) on the surface (η_{surface}) of WO₃, O-WO₃, H-WO₃ and HO-WO₃ samples.

Fig. S6. Solar irradiance of standard AM 1.5G and calculated photocurrents by integrating IPCE over the photon flux of AM 1.5G of the WO₃, O-WO₃, H-WO₃ and HO-WO₃ samples at 1.23 V *vs.* RHE.

Fig. S7. APCE at different wavelengths for pristine WO_3 , O- WO_3 , H- WO_3 , and HO- WO_3 .

Fig. S8. PL spectra of pristine WO₃, O-WO₃, H-WO₃, and HO-WO₃.

Fig. S9. XPS survey spectra collected for (a) pristine WO₃, (b) H-WO₃, (c) O-WO₃, and (d) HO-WO₃.

Fig. S10. XPS valence band spectra collected for pristine WO₃, O-WO₃, H-WO₃, and HO-WO₃ samples.

Fig. S11. Mott-Schottky plots of pristine WO_3 , H- WO_3 , and HO- WO_3 in a 0.1 M Na_2SO_4 aqueous electrolyte (pH 6.8).

Fig. S12. Raman spectra of pristine WO₃, O-WO₃, H-WO₃, and HO-WO₃ samples.

Fig. S13. A 10 h stability teat of the HO-WO₃ samples in a 0.1 M Na₂SO₄ aqueous electrolyte (pH 6.8) under AM 1.5G at a constant applied bias of 1.23 V *vs*. RHE.

Fig. S14. Photocurrent-time plots of HO-WO₃ samples in a PEC cell under visible light irradiation ($\lambda \ge 420$ nm) in a 0.1 M Na₂SO₄ aqueous electrolyte (pH 6.8). The constant potential is 1.23 V *vs.* RHE.

Quantify the loss of oxygen evolution

We can quantify the amount of $S_2O_8^{2-}$ by detecting Fe³⁺ which is oxidized from Fe²⁺ by $S_2O_8^{2-}$ (*eq.* 3).

$$2Fe^{2+} + S_2O_8^{2-} \to 2SO_4^{2-} + 2Fe^{3+}$$
(3)

The characteristic peaks of Fe²⁺ and Fe³⁺ are located on 250 nm and 290 nm in UVvisible diffusive reflectance spectra. According to the absorbance of Fe³⁺, the concentration of Fe³⁺ can be calculated. Fig. S15 shows the standard curve of Fe₂(SO₄)₃ solution with different concentration (10⁻³ M, 5×10⁻⁴ M, 10⁻⁴ M, and 10⁻⁵ M). After 5 h stability measurement, 5 mL 10⁻³ M FeSO₄ solution was added into 5 mL electrolyte and then this solution was stirred for 10 min. The absorbance of this solution at 290 nm is about 0.252 (Fig. S16). The concentration of S₂O₈²⁻ in 5 mL electrolyte is 2.52×10^{-4} M. So the amount of S₂O₈²⁻ in 50 mL electrolyte after 5 h stability measurement is 12.6 µmol. Therefore, the amount of oxygen which is calculated by S₂O₈²⁻ in side reaction is 6.3 µmol.

Fig. S15. The standard curve of $Fe_2(SO_4)_3$ solution with different concentration (10⁻³ M, 5×10⁻⁴ M, 10⁻⁴ M, and 10⁻⁵ M).

Fig. S16. UV-vis plots of electrolyte after 5 h reaction with adding 10⁻³ M FeSO₄ solution.

Ref.	Sample	Electrolyte	Photocurrent at 1.23 V vs. RHE (mA cm ⁻²)	Onset Potential (V vs. RHE)	Stability
This work	WO ₃ nanoflake	0.1 M Na ₂ SO ₄ (pH=6.8)	2.25	0.57	10 h (> 95% retention)
1	W _{1-<i>x</i>} O _{3-<i>y</i>}	0.5 M Na ₂ SO ₄ (pH=6.8)	2.75	0.56	10 h (73% retention)
2	WO ₃ columns	0.1 M H ₂ SO ₄ (pH=1)	2.40	0.57	0.5 h (65% retention)
3	WO ₃ porous nanosheet	0.5 M Na ₂ SO ₄	1.27	0.70	1 h (100% retention)
4	FeOOH/WO ₃	0.5 M K ₂ SO ₄ (pH=6.8)	1.50	0.70	2 h (66% retention)
5	FeOOH/WO ₃	0.1 M KPi (pH=7)	1.42	0.68	3 h (100% retention)
6	WO ₃ nanoflower	1 M H ₂ SO ₄ (pH=0)	1.10	0.63	2 h (50% retention)
7	IrO ₂ /WO ₃	1 M H ₂ SO ₄ (pH=0)	1.00	0.65	N/A
8	N-doped WO ₃	0.5 M H ₂ SO ₄ (pH=0.3)	2.61	0.59	N/A
9	WO _{3-x}	0.5 M Na ₂ SO ₄	0.52	0.70	7 h (80% retention)
10	WO ₃ nanoplate	0.5 M Na ₂ SO ₄	0.25	0.68	140 s (90% retention)

Table S1. Summary of various WO3 photoanodes.

Notes and references

- M. Ma, K. Zhang, P. Li, M. S. Jung, M. J. Jeong, J. H. Park, *Angew. Chem. Int. Ed.* 2016, 55, 11819-11823.
- 2. C. Fàbrega, S. Murcia-López, D. Monllor-Satoca, J. D. Prades, M. D. Hernández-Alonso, G. Penelas, J. R. Morante, T. *Andreu, Appl. Catal., B* 2016, *189*, 133-140.
- Y. Liu, L. Liang, C. Xiao, X. Hua, Z. Li, B. Pan, Y. Xie, *Adv. Energy Mater.* 2016, 6, 1600437.
- 4. W. L. Kwong, C. C. Lee, J. Messinger, J. Phys. Chem. C 2016, 120, 10941-10950.
- 5. J. W. Huang, Y. Ding, X. Luo, Y. Y. Feng, J. Catal. 2016, 333, 200-206.
- 6. N. Wang, D. Wang, M. Li, J. Shi, C. Li, Nanoscale 2014, 6, 2061-2066.
- J. M. Spurgeon, J. M. Velazquez, M. T. McDowell, *Phys. Chem. Chem. Phys.* 2014, 16, 3623-3631.
- 8. Y. Liu, Y. Li, W. Li, S. Han, C. Liu, Appl. Surf. Sci. 2012, 258, 5038-5045.
- G. Wang, Y. Ling, H. Wang, X. Yang, C. Wang, J. Z. Zhang, Y. Li, *Energy Environ.* Sci. 2012, 5, 6180.
- 10. J. Y. Zheng, G. Song, J. Hong, T. K. Van, A. U. Pawar, D. Y. Kim, C. W. Kim, Z. Haider, Y. S. Kang, *Cryst. Growth Des.* 2014, *14*, 6057-6066.