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Experimental Section

Materials: Tungstic acid (H2WO4, GR, 99.0%) and hydrogen peroxide (H2O2, AR, 

30%) were purchased from Sinopharm Chemical Reagent Co., Ltd. Polyvinyl alcohol 

(PVA, 97%) was supplied by Tianjin YuanLi Chemical Technology Co., Ltd. Urea 

(GR, 99.0%) was supplied by Kermel Chemical Technology Co., Ltd. Acetonitrile (AR, 

99.0%), oxalic acid (AR, 98.0%), hydrochloric acid (HCl, 36.5-38.0 wt%), sodium 

sulfite (GR, 98.0%), and sodium sulfate (Na2SO4, GR, 99.0%) were all purchased from 

Tianjin GuangFu Chemical Research Institute. All the reagents were used without any 

purification process. High purity water (18.25 MΩ•cm) supplied by a UP Water 

Purification System was used in the whole experimental processes. FTO substrates 

(F:SnO2, 14 Ω per square) were purchased from Nippon Sheet Glass, Japan. And before 

using, the FTO substrates were ultrasonically cleaned for 30 min each in deionized 

water, ethanol, and acetone, respectively.

Characterization: X-ray diffraction patterns were recorded with a Bruker D8 Focus 

operating at 40 kV and 40 mA equipped with a nickel-filtered Cu Kα radiation (λ = 

1.54056 Å) and operating in a 2θ range of 20-70 ° at a scan rate of 8 per minute. The 

morphologies were characterized by field emission scanning electron microscope 

(FESEM, S-4800). TEM was performed on a JEOL JEM 2100F electron microscope 

operating at 200 kV. UV–visible reflectance spectra and transmittance spectra of Bi-

based electrode were obtained on a HITACHI U-4100 spectrophotometer. XPS analysis 

of the samples was carried out on a Physical Electronics PHI 1600 ESCA system with 

an Al Kα X-ray source (E = 1486.6 eV). The binding energy was calibrated using the 

C 1s photoelectron peak at 284.6 eV as the reference. The photoluminescence spectra 

was obtained using a Hitachi F-4600 fluorescence spectrophotometer with excitation of 



325 nm light at ambient temperature. Raman spectra was recorded on a DXR Raman 

Microscope with 532 nm as the excitation wavelength.

Synthesis of pristine WO3 nanoflakes: WO3 nanoflakes were synthesized by a 

modified hydrothermal method. Briefly, a seed solution prepared by dissolving 1.25 g 

of H2WO4 and 0.5 g of poly(vinyl alcohol) (PVA) into 17 mL of H2O2 (30 wt %) was 

spin-coated onto fluorine-doped tin oxide substrates at 1000 rpm, followed by 

annealing at 500 °C in air for 2 h. Another H2WO4 solution was prepared by adding 

1.25 g of H2WO4 and 17 mL of H2O2 (30 wt %) into 25 mL of H2O and stirred at 95 °C 

to dissolve. This H2WO4 solution was then diluted to 0.05 M for the hydrothermal 

process. In order to prepared the hydrothermal precursor solution, 3 mL of H2WO4 

(0.05 M), 0.02 g of oxalic acid, 0.02 g of urea, 12.5 mL of acetonitrile, and 0.5 mL of 

HCl (6 M) were added into a 50 mL breaker and stirred to clear. An FTO substrate 

precoated with WO3 seed was placed into a 50 mL Teflon-lined stainless steel autoclave 

filled with the as-prepared precursor solution, which was then kept at 180 °C for 2 h. 

Finally, the obtained sample was annealed at 500 °C in air for 2 h.

Synthesis of hydrogen-treated WO3 nanoflakes (H-WO3): Hydrogen treatment was 

carried out in a home built tube furnace system. The calcinated WO3 nanoflake films 

were further annealed in hydrogen (60 sccm H2 flow) at different time in 350 °C for the 

range of 10-60 minutes. 

Synthesis of ozone-treated WO3 nanoflakes (O-WO3): Ozone treatment was also 

carried out in a home built tube furnace system. The calcinated WO3 nanoflake and 

hydrogen-treated WO3 films were further annealed in ozone (40 sccm O3 flow) at 

different time in 100 °C for the range of 10-60 minutes.



Synthesis of WO3 nanoflakes with annealing in hydrogen and then in ozone (HO-

WO3): The optimized WO3 nanoflake photoelectrodes were prepared by annealing in 

hydrogen (60 sccm H2 flow) in 350 °C for 30 minutes and then in ozone (40 sccm O3 

flow) in 100 °C for 30 minutes.

Photoelectrochemical Measurements: PEC measurements were performed in 0.1 M 

Na2SO4 (pH 6.8) using a standard quartz 3-electrode cell with Pt foil as the counter 

electrode, Ag/AgCl as the reference electrode and the WO3 nanoflake phototelectrodes 

as the working electrode. In order to simulate sunlight, a 300 W xenon lamp 

(PE300BUV, CERMAX) equipped with an AM 1.5 filter was used as the light source, 

and the power intensity of the light was calibrated to 100 mW/cm2. An electrochemical 

workstation (IVIUM CompactStat.e20250) was used to measure the current-voltage (I-

V) characteristic of the electrode, with a scan rate of 50 mV s-1. We also measure the 

I-V curves of the three samples under visible light irradiation with wavelength≥420 nm 

(Figure S2). Before the test, the electrode was encapsulated by epoxy and covered with 

a mask to expose 0.28 cm-2 surface area to the irradiation.

Detection of the amount of hydrogen and oxygen evolution: To quantitatively 

determine the amount of H2 and O2 produced from the reduction of water, a three-

electrode system was employed. An aqueous Na2SO4 (0.1 M, pH 6.8) was used as the 

electrolyte solution. The sample was irradiated under visible light illumination (λ≥420 

nm) (100 mW cm-2). The gas collected from the platinum counter electrode was 

analyzed by an online gas chromatograph (GC2060, Shanghai RuiMin Electronics 

Group) with a thermal conductivity detector (TCD) using He as the carrier gas. For this 

purpose, a customer-designed air-tight PEC cell was used and the amount of H2 and O2 

was measured every 1 h at a constant bias of 1.23 V vs. RHE under visible light 

illumination (λ≥420 nm).



Calculation of the incident photon to current conversion efficiency (IPCE): IPCE 

of the samples was acquired according to the equation: 

IPCE (%)=(I/P) × (1240/λ) × 100

Where I is photocurrent density at the measurement applied bias, λ is the wavelength, 

and P is the incident light intensity of 100 mW cm-2 (AM 1.5G).

Calculation of the absorbed photon to current conversion efficiency 

(APCE):APCE of the samples was obtained according to the equation: 

APCE (%)=φinj × ƞcc =[IPCE/(1-10-Aλ)] × 100

Where φinj is electron-injection efficiency, ƞcc is charge collection efficiency, and Aλ 

corresponds to the absorbance of the material at any particular wavelength (λ) as 

measured through UV-visible spectra.

Calculation of the applied bias photon-to-current efficiency (ABPE): ABPE of the 

three Bi-based samples was calculated according to the equation: 

ABPE = I×(1.23-V)/Plight

Where I is photocurrent density at the measurement applied bias, V is the applied bias 

(vs. RHE), and Plight is the incident light intensity of 100 mW cm-2 (AM 1.5G). In 0.1 

M Na2SO4 electrolyte, the reversible hydrogen electrode (RHE) potential can be 

converted from the Ag/AgCl reference electrode as: 

ERHE = EAg/AgCl+0.059×pH+ Eº Ag/AgCl, where EºAg/AgCl = 0.197 V at 25 ºC

Calculation of the carrier density:

The carrier density is calculated with the following equation:



Nd=(2/eεε0)[d(1/C2)/dV]-1

Where Nd is the carrier density, e = 1.60 × 10-19 C is the electron charge, ε = 80 is the 

dielectric constant of WO3, ε0 = 8.85 × 10-14 F cm-1 is the vacuum permittivity, C is the 

capacitance of the space charge region, and V is the electrode applied potential.

The efficiency of charge separation in the bulk and on the surface

The photocurrent density arising from PEC performance (JPEC) can be described as 

following:

JPEC = Jabs × ƞbulk × ƞsurface

Where Jabs is the photocurrent density when completely converting the absorbed 

photons into current (APCE = 100%). Adding 1.0 M Na2SO3 as the electrolyte can 

largely suppress the surface recombination of charge carriers without influencing the 

charge separation in the electrode bulk (ƞsurface could be regarded as 100%). Therefore, 

ƞbulk and ƞsurface can be determined as following:

ƞbulk = Jsulfite / Jabs

ƞsurface = Jwater / Jsulfite

where Jwater and Jsulfite is the photocurrent density for PEC water oxidation and sulfite 

oxidation, respectively. According to the UV-vis absorptance spectrum (Fig. 2d) and 

the AM 1.5G solar spectrum, assuming APCE = 100%, the Jabs of WO3 sample was 

calculated to 2.5 mA cm-2. Because the UV-vis absorptance spectrum of the four 

samples are similar, the Jabs can be estimated as a constant. Therefore, the efficiency of 

charge separation in the bulk and on the surface of the photoelectrodes can be 

calculated.



Fig. S1. Cross-sectional FESEM images of HO-WO3 sample.



Fig. S2. SEM images of (a) WO3, (b) H-WO3 and (c) O-WO3 samples.



Fig. S3. Digital pictures of these samples for (a) pristine WO3, (b) O-WO3, (c) H-

WO3, and (d) HO-WO3.



Fig. S4. Current-potential plots for pristine WO3, H-WO3, O-WO3, and HO-WO3 

under visible light illumination with wavelength ≥ 420 nm in a 0.1 M Na2SO4 

aqueous electrolyte (pH 6.8).



Fig. S5. (a) J-V curves of WO3, O-WO3, H-WO3 and HO-WO3 samples measured 

with AM 1.5G illumination (100 mW cm-2) for sulfite oxidation. Charge separation 

efficiency (b) in the bulk (ηbulk) and (c) on the surface (ηsurface) of WO3, O-WO3, H-

WO3 and HO-WO3 samples.



Fig. S6. Solar irradiance of standard AM 1.5G and calculated photocurrents by 

integrating IPCE over the photon flux of AM 1.5G of the WO3, O-WO3, H-WO3 and 

HO-WO3 samples at 1.23 V vs. RHE.



Fig. S7. APCE at different wavelengths for pristine WO3, O-WO3, H-WO3, and HO-

WO3.



Fig. S8. PL spectra of pristine WO3, O-WO3, H-WO3, and HO-WO3.



Fig. S9. XPS survey spectra collected for (a) pristine WO3, (b) H-WO3, (c) O-WO3, 

and (d) HO-WO3.



Fig. S10. XPS valence band spectra collected for pristine WO3, O-WO3, H-WO3, and 

HO-WO3 samples.



Fig. S11. Mott-Schottky plots of pristine WO3, H-WO3, and HO-WO3 in a 0.1 M 

Na2SO4 aqueous electrolyte (pH 6.8).



Fig. S12. Raman spectra of pristine WO3, O-WO3, H-WO3, and HO-WO3 samples.



Fig. S13. A 10 h stability teat of the HO-WO3 samples in a 0.1 M Na2SO4 aqueous 

electrolyte (pH 6.8) under AM 1.5G at a constant applied bias of 1.23 V vs. RHE.



Fig. S14. Photocurrent-time plots of HO-WO3 samples in a PEC cell under visible 

light irradiation (λ ≥ 420 nm) in a 0.1 M Na2SO4 aqueous electrolyte (pH 6.8). The 

constant potential is 1.23 V vs. RHE.



Quantify the loss of oxygen evolution

We can quantify the amount of S2O8
2- by detecting Fe3+ which is oxidized from Fe2+ 

by S2O8
2- (eq. 3).

2Fe2+ + S2O8
2- → 2SO4

2- +2Fe3+ (3)

The characteristic peaks of Fe2+ and Fe3+ are located on 250 nm and 290 nm in UV-

visible diffusive reflectance spectra. According to the absorbance of Fe3+, the 

concentration of Fe3+ can be calculated. Fig. S15 shows the standard curve of Fe2(SO4)3 

solution with different concentration (10-3 M, 5×10-4 M, 10-4 M, and 10-5 M). After 5 h 

stability measurement, 5 mL 10-3 M FeSO4 solution was added into 5 mL electrolyte 

and then this solution was stirred for 10 min. The absorbance of this solution at 290 nm 

is about 0.252 (Fig. S16). The concentration of S2O8
2- in 5 mL electrolyte is 2.52×10-4 

M. So the amount of S2O8
2- in 50 mL electrolyte after 5 h stability measurement is 12.6 

μmol. Therefore, the amount of oxygen which is calculated by S2O8
2- in side reaction 

is 6.3 μmol.



Fig. S15. The standard curve of Fe2(SO4)3 solution with different concentration (10-3 

M, 5×10-4 M, 10-4 M, and 10-5 M).



Fig. S16. UV-vis plots of electrolyte after 5 h reaction with adding 10-3 M FeSO4 

solution.



Table S1. Summary of various WO3 photoanodes.

Ref. Sample Electrolyte
Photocurrent at 
1.23 V vs. RHE 

(mA cm-2)

Onset 
Potential

(V vs. 
RHE)

Stability

This 
work

WO3 
nanoflake

0.1 M 
Na2SO4 

(pH=6.8)

2.25 0.57 10 h (> 95% 
retention)

1 W1-xO3-y 0.5 M 
Na2SO4 

(pH=6.8)

2.75 0.56 10 h (73% 
retention)

2 WO3 
columns

0.1 M 
H2SO4 
(pH=1)

2.40 0.57 0.5 h (65% 
retention)

3 WO3 porous 
nanosheet

0.5 M 
Na2SO4

1.27 0.70 1 h (100% 
retention)

4 FeOOH/WO3 0.5 M 
K2SO4 

(pH=6.8)

1.50 0.70 2 h (66% 
retention)

5 FeOOH/WO3 0.1 M KPi 
(pH=7)

1.42 0.68 3 h (100% 
retention)

6 WO3 
nanoflower

1 M 
H2SO4 
(pH=0)

1.10 0.63 2 h (50% 
retention)

7 IrO2/WO3 1 M 
H2SO4 
(pH=0)

1.00 0.65 N/A

8 N-doped 
WO3

0.5 M 
H2SO4 

(pH=0.3)

2.61 0.59 N/A

9 WO3-x 0.5 M 
Na2SO4

0.52 0.70 7 h (80% 
retention)

10 WO3 
nanoplate

0.5 M 
Na2SO4

0.25 0.68 140 s (90% 
retention)
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