Electronic Supplementary Information

Efficient oxygen reduction by synergistic effect of nano-sized delafossite (CuFeO₂) and multi-walled CNT

Shu-Yu Zhao,^a Bing Zhang,^a Hui Su,^a Jun-Jun Zhang,^a Xin-Hao Li, ^a Kai-Xue Wang,^a Jie-Sheng Chen,^a Xiao Wei^{*a} and Pingyun Feng^{*b}

a. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China

b. Department of Chemistry, University of California, Riverside, California 92521, USA

* E-mail: weixiao@sjtu.edu.cn

* E-mail: pingyun.feng@ucr.edu

m(CNT)/g	m(CuFeO ₂)/g	CNT% / wt%	sample	
		0	CuFeO ₂	
0.168	1.514	10	CuFeO ₂ /CNT-10	
0.505	1.514	25	CuFeO ₂ /CNT-25	
1.514	1.514	50	CuFeO ₂ /CNT-50	
4.542	1.514	75	CuFeO ₂ /CNT-75	
13.626	1.514	90	CuFeO ₂ /CNT-90	
		100	CNT	

Table S1 The raw materials, combination and sign of products.

Figure S1 XRD patterns for Cu/Fe-containing samples obtained by heating mixture with Fe(NO₃)₃·9H₂O and Cu(NO₃)₂·3H₂O 48 hours at 120 °C, 150 °C, 180 °C and 210 °C, respectively.

Figure S2 XRD patterns for Cu/Fe-containing samples obtained by heating mixture with Fe(NO₃)₃·9H₂O and Cu(NO₃)₂·3H₂O at 180 °C during different time (6 hours, 12 hours, 24 hours and 48 hours).

Figure S3 SEM images of CuFeO₂ at 180 °C during different time (a) 6 hours, (b) 12 hours, (c) 24 hours and (d) 48 hours.

Figure S4 Raman spectroscopic at 532-nm excitation of CuFeO₂-CNT-75, solo CNTs with and without hydrothermal process (180 °C, 48 hours).

Figure S5 XRD patterns of solo CNTs with and without hydrothermal process (180 °C, 48 hours).

Figure S6 XRD patterns of CuFeO₂, CuFeO₂-CNT-25, CuFeO₂-CNT-50, CuFeO₂-CNT-75, CuFeO₂-CNT-90 and alone CNT, respectively.

Table S2 Weight ratios of elements C, O, Cu, Fe in the samples. (Among them, elements C, O are measured by EAS, elements Cu, Fe are measured by ICP.)

Elements	С	0	Cu	Fe
Samples				
CuFeO ₂ -CNT-75	62.92 wt%	7.01 wt%	8.850 wt%	9.702 wt%
CuFeO ₂ -CNT-75- Physical Mixture	69.43 wt%	7.27 wt%	9.123 wt%	8.639 wt%

Figure S7 CVs with N_2 or O_2 saturated 0.1 M KOH solution on (a,b) CuFeO₂, (c) CNT and (d) CNT with hydrothermal process.

Figure S8 The electron transfer number (n) measured by rotating ring-disk electrode (RRDE) test of CuFeO₂-CNT-75, Pt/C and bare CNT. All measurements were conducted on glassy carbon electrodes at 1600 rpm in O₂-saturated electrolytes with a sweep rate of 10 mV s⁻¹. The electron transfer number (n) was determined by the followed equation:

$$n = 4 \times \frac{I_d}{I_d + I_r/N}$$

where I_d is disk current, I_r is ring current and N is current collection efficiency (N) of the Pt ring.^{S1} N was determined to be 0.53 from the reduction of $K_3Fe[CN]_6$.

Figure S9 CVs taken over a range of scan rates (10, 20, 40, 60, 80 and 100 mV·s⁻¹) with N₂ saturated 0.1 M KOH solution for determination of double-layer capacitance for a (a) CuFeO₂-CNT-75, (c) CuFeO₂, (e) CNT, (g) CNT with hydrothermal process electrode; (b, d, f, h) Current due to double-layer charging plotted against cyclic voltammetry scan rate; (i) ESA of CuFeO₂-CNT-75, CuFeO₂, CNT, CNT with hydrothermal process by a double layer capacitance measurement; (j) RDE polarization curves of CuFeO₂-CNT-75, CuFeO₂ and CNT with normalized current density; (k) CVs of various electrodes in 5 mM K₃Fe(CN)₆/0.1 M KCl solution.
^{S2} Scan rate: 5 mV·s⁻¹; (l) ESA of various electrodes tested by K₃Fe(CN)₆ method.

Figure S10 Reaction order plots for ORR on CuFeO₂-CNT-75 catalyst at various electrode potentials deduced from the RDE data (Fig. 5a in article).

Figure S11 XRD patterns of (a) CuFeO₂-CNT-75 (powder) before ORR, (b) CuFeO₂-CNT-75 after ORR and (c) bare Si substrate. For XRD test, the CuFeO₂-CNT-75 electrode after ORR was washed with distilled water and alcohol solution for three times, transferred on Si substrate and subsequently dried in air. (the peak at 62°: Si (400) under Cu Kβ radiation)

Figure S12 Elemental mappings of CuFeO₂-CNT-75 (a) before and (b) after ORR by SEM/EDS.

Figure S13 Elemental mappings of CuFeO₂-CNT-75 (a) before and (b) after ORR by TEM/EDS.

Figure S14 RDE polarization curves of CuFeO₂-CNT-75 and physical mixture containing CNT (75 wt%) and CuFeO₂ (25 wt%).

Reference

- S1 R. Zhou, Y. Zheng, M. Jaroniec and S.-Z. Qiao, ACS Catalysis, 2016, 6, 4720-4728.
- S2 B. Zhang, H.-H. Wang, H. Su, L.-B. Lv, T.-J. Zhao, J.-M. Ge, X. Wei, K.-X. Wang, X.-H. Li and J.-
- S. Chen, Nano Research, 2016, 9(9), 2606-2615.