Supporting Information

A facile route to the production of polymeric nanofibrous aerogels for environmentally sustainable applications

Qiongzhen Liu^{1, 2#}, Jiahui Chen^{1#}, Tao Mei¹, Xiaowei He¹, Weibing Zhong³, Ke Liu^{1, 2},

Wenwen Wang^{1, 2}, Yuedan Wang^{1, 2}, Mufang Li^{1, 2}, Dong Wang^{1, 2, 3}*

¹College of Materials Science and Engineering, Wuhan Textile University, Wuhan,

430200, China

²Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan, 430200,

China

³College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China

*E-mail: Dong Wang (*Corresponding author)

[#]These authors (Qiongzhen Liu and Jiahui Chen) contribute equally to this work

the aerogels.						
Sample	Density (mg cm ⁻³)	Porosity (%)	Specific surface area (m ² g ⁻¹)	Average pore size (nm)		
NFA1	6.56	99.4	32.3	15.8		
NFA2	7.11	99.3	32.0	15.2		
NFA3	8.38	99.1	31.8	15.0		
NFA4	9.66	99	25.9	13.4		
NFA5	16.29	98.5	24.1	12.1		
NFA6	24.08	97.8	22.1	11.0		
HNFA	11.1	99	25.6	13.0		

Table S1. The density, porosity, BET surface area and average pore size of all

Figure S1. The EDS mapping and local point EDS analysis of the HNFA.

Figure S2. The respective mass based absorption capacities of the NFA3 aerogels for different oils and organic solvents.

various of game sorvents.					
Organic solvents	Absorption capacity (g g ⁻¹ %)				
-	NFA3	HNFA			
Vegetable Oil	4147	4200			
Pump Oil	3693	4105			
Silicone Oil	3752	4000			
Gasoline	3093	2695			
Cyclohexane	3380	4881			
Chloroform	4197	5392			
Dichloromethane	4471	4647			
Hexane	2810	3047			
DMF	3853	3914			
Isoproyl Alcohol	3256	3294			
Ethanol	3003	3346			
Acetone	3193	5014			

 Table S2. Comparison of the absorption capacities of NFA and HNFA for

 various organic solvents.

Absorbents	Absorption capacity	Reference
	(g g ⁻¹ %)	
Cellulose nanofibrils	2000-4600	ACS Appl Mater Interfaces
aerogel		(2016) [1]
Cellulose-based waste	2800-5000	Carbohydrate Polymers
newspaper		(2015) ^[2]
PVF sponge	1400-5700	ACS Applied Materials & Interfaces (2014) ^[3]
Cellulose nanofibrils aerogel	4900-20000	ACS Applied Materials & Interfaces (2017) ^[4]
Carbon Aerogel	5000-22500	Advanced Materials Interfaces (2016) ^[5]
Carbon aerogel from winter melon	1600-5000	ACS Sustainable Chemistry & Engineering (2014) ^[6]
Graphene aerogels	3000-12000	Chemical Engineering Journal (2017) ^[7]
Graphene aerogel	1800-2700	Journal of Colloid and Interface Science (2017) ^[8]
Silica aerogels	500-1500	RSC Advances (2017) ^[9]
Graphene/R-FeOOH aerogel	1200-2700	ACS Nano (2012) [10]
PVA-co-PE NF Aerogel	2300-5000	This study

Table S3. Comparison of absorption capacities of various absorbents.

[1] A. Mulyadi, Z. Zhang, Y. Deng, ACS Appl Mater Interfaces 2016, 8, 2732.

[2] S. Han, Q. Sun, H. Zheng, J. Li, C. Jin, Carbohydr Polym 2016, 136, 95.

[3] Y. Pan, K. Shi, C. Peng, W. Wang, Z. Liu, X. Ji, ACS Appl Mater Interfaces 2014, 6, 8651.

[4] O. Laitinen, T. Suopajarvi, M. Osterberg, H. Liimatainen, ACS Appl Mater Interfaces 2017,

9,25029

[5] W. Chen, Q. Zhang, K. Uetani, Q. Li, P. Lu, J. Cao, Q. Wang, Y. Liu, J. Li, Z. Quan, Y.

Zhang, S. Wang, Z. Meng, H. Yu, Advanced Materials Interfaces 2016, 3, 1600004.

[6] Y.-Q. Li, Y.A. Samad, K. Polychronopoulou, S.M. Alhassan, K. Liao, ACS Sustainable Chemistry & Engineering 2014, 2, 1492.

[7] Y. Zhan, N. Yan, Y. Li, Y. Meng, J. Wang, N. Zhang, Q. Yu, H. Xia, *Chemical Engineering Journal* 2017, **327**, 142.

[8] R.P. Ren, W. Li, Y.K. Lv, J Colloid Interface Sci 2017, 500, 63.

[9] M. Shi, C. Tang, X. Yang, J. Zhou, F. Jia, Y. Han, Z. Li, RSC Adv. 2017, 7, 4039.

[10] Y. Zhan, N. Yan, Y. Li, Y. Meng, J. Wang, N. Zhang, Q. Yu, H. Xia, Chemical

Movies for supporting information

Movie S1. The movie showing dynamic compressive behavior of the HNFA aerogel.

(Please see online)

Movie S2. The movie showing the excellent thermal insulation properties of the NFA aerogel. (Please see online)

Movie S3. The movie showing continuous separation of organic solvent from water through a HNFA aerogel. (**Please see online**)