Electronic Supplementary Information for

Atomic Layer Deposition of Nickel Carbide for Supercapacitors and Electrocatalytic Hydrogen Evolution

Wei Xiong,^{a,#} Qun Guo,^{b,#} Zheng Guo,^a Hao Li,^a Ran Zhao,^a Qiang Chen,^b Zhongwei Liu,^{b,*} and Xinwei Wang^{a,*}

^a School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, China

^b Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 102600, China

[#] These authors contributed equally to this work.

*Corresponding email: liuzhongwei@bigc.edu.cn (Z.L.); wangxw@pkusz.edu.cn (X.W.)

Figure S1. ALD growth rate of Ni₃C as a function of deposition temperature.

Figure S2. High-resolution XPS spectra of (a) C 1s, (b) O 1s, and (c) N 1s for the ALD Ni_3C film.

Figure S3. High-resolution SEM images of (a) pristine CC and (b) ALD Ni₃C coated CC.

Figure S4. (a) CV curves for the initial 6 cycles of the ALD Ni₃C/CNT electrode (scan rate 30 mV/s). The first-cycle curve is apparently different from the following cycles, which implies possible irreversible oxidation of the surface Ni₃C ($\frac{1}{3}$ Ni₃C + 3OH⁻ \rightarrow NiOOH + H₂O + $\frac{1}{3}$ C+ 3e⁻) during the first anodic scan (*J. Solid State Electrochem*. 2016, **20**, 775). The subsequently CV curves show a reversible redox pair centered at 0.41 V, which corresponds to the redox reaction between Ni(OH)₂/NiOOH (Ni(OH)₂ + OH⁻ \leftrightarrow NiOOH + H₂O + e⁻). (*Electrochim. Acta*, 2016, **204**, 160–168; *J. Mater. Chem. A*, 2013, **1**, 7880–7884; *Adv. Funct. Mater.*, 2012, **22**, 1272–1278) (b) SEM image of the Ni₃C/CNT after CV cycling for 5000 cycles. On the Ni₃C/CNT surface formed some nanoflakes, which were representative for Ni(OH)₂ (*Adv. Funct. Mater.*, 2012, **22**, 1272–1278; *J. Mater. Chem. A*, 2015, **3**, 19545–19555). (c) XPS Ni 2p_{3/2} spectrum taken after the 5000-cycle CV, in which a peak corresponding to Ni(OH)₂ was observed (*Adv. Funct. Mater.*, 2015, **25**, 7530–7538), suggesting the formation of the Ni(OH)₂ on the Ni₃C surface.

Figure S5. Charge-discharge curves of the ALD Ni₃C/CNT electrode at various current densities.

Figure S6. Specific capacitance of the $Ni_3C/CNT//AC$ supercapacitor with respect to discharge current density.

Figure S7. (a) Photograph of glassy carbon (GC) and ALD Ni₃C coated GC (Ni₃C/GC). Photographs of tape tests for (b) Ni₃C/GC (passed), (c) Ni₃S₂/GC (failed), and (d) Ni₂P/GC (failed). Ni₃S₂/GC was synthesized by electrodeposition of Ni₃S₂ on GC (Xing, *et al.*, *J. Power Sources* **2014**, *245*, 463–467), and Ni₃S₂/GC was synthesized by phosphorization of Ni(OH)₂ on GC (Zhou, *et al.*, *Adv. Funct. Mater.* **2015**, *25*, 7530–7538).

Table S1. Comparison of the supercapacitor performance for the ALD Ni_3C/CNT and various other reported Ni-based materials.

Active materials	Specific capacitance Capacitance retention upon cycling		Reference
Ni ₃ C/CNT	1850 F/g (at 4 A/g)	98.5% (after 5000 cycles at 40 A/g)	This work
Ni(OH) ₂ /Ni foam	2384 F/g (at 1 A/g)	75% (after 1000 cycles at 5 A/g)	Nano Energy 2015, 11, 154
Mg-Ni(OH) ₂	1931 F/g (at 0.5A/g)	95% (after 10000 cycle at 10 A/g)	ACS Energy Lett., 2016, 1, 814
Ni ₃ S ₂ /3D-rGO	1886 F/g (at 1 A/g)	91% (after 30000 cycle at 2 A/g)	ACS Energy Lett., 2017, 2, 759
Ni(OH) ₂ /g-C ₃ N ₄	1768 F/g (at 7 A/g)	84 % (after 8000 cycle at 51 A/g)	ACS Appl. Mater. Interfaces 2017 , 9, 17890
Ni-P	1597 F/g (at 0.5 A/g)	71.4% (after 1000 cycles at 2 A/g)	<i>J. Power Sources</i> 2015 , <i>274</i> , 1107
NiMoO ₄ nanowires	1587 F/g (at 6 A/g)	76.9% (after 4000 cycles at 18 A/g)	<i>Nano Energy</i> 2014 , <i>8</i> , 174
Ni(OH) ₂ /graphite	1560 F/g (at 0.5 A/g)	65% (after 1000 cycles at 10 A/g)	ACS Nano 2013 , 7, 6237
NiO/GO foam	1225 F/g (at 2 A/g)	94% (after 2000 cycles at 12 A/g)	<i>J. Mater. Chem. A</i> 2014 , <i>2</i> , 3223
NiCo ₂ O ₄ hollow spheres	1141 F/g (at 1 A/g)	94.7% (after 4000 cycles at 5 A/g)	Angew. Chem. Int. Ed 2014 , 53, 1488
NiCo ₂ S ₄ hollow spheres	1036 F/g (at 1 A/g)	87% (after 2000 cycles at 5 A/g)	<i>Nat. Commun.</i> 2015 , <i>6</i> , 6694
Ni ₃ N/CC	990 F/g (at 3.5 A/g)	50% (after 2000 cycles at 100 mV/s)	<i>J. Mater. Chem. A</i> 2016 , <i>24</i> , 9844
NiS/rGO	905 F/g (at 0.5 A/g)	90% (after 2000 cycles at 4 A/g)	<i>Nano Energy</i> 2014 , <i>5</i> , 74
Ni _{0.85} Se/MoSe ₂	774 F/g (at 1 A/g)	95% (after 1000 cycles at 3 A/g)	ACS Appl. Mater. Interfaces 2017 , 9, 17067
Ni-B/carbon fiber	733 F/g (at 5 mV/s)	72% (after 1000 cycles at 10 mV/s)	<i>J. Mater. Sci,</i> 2015 , <i>50</i> , 4622
CoNiAl-LDH/AC	501 F/g (at 10 A/g)	91% (after 1000 cycles at 6 A/g)	<i>Nanoscale</i> 2014 , <i>6</i> , 3097

Active materials	Overpotential $(j = -10 \text{ mA/cm}^2)$	Tafel slope (mV/dec)	Long-term stability (current retention under constant bias)	Reference
Ni ₃ C/CNT	-132 mV	49	93% after 48 h (initial <i>j</i> = –10 mA/cm ²)	This work
NiO/Ni-CNT	-80 mV	82	95% after 2 h (initial $j = -5 \text{ mA/cm}^2$)	<i>Nat. Commun.</i> 2014 , <i>5</i> , 4695
Ni _{1-x} Fe _x /Nanocarbon	-184 mV	100	91% after 0.3 h (initial $j = -20 \text{ mA/cm}^2$)	ACS Catal. 2016 , 6, 580
Ni/N-Graphene	-205 mV	160	90.5% after 10 h (initial $j = -10 \text{ mA/cm}^2$)	<i>Adv. Mater.</i> 2017 , <i>26</i> , 1605957
Co _{0.85} Se/NiFe-LDH	-265 mV	160	86% after 10 h (initial $j = -10 \text{ mA/cm}^2$)	Energy Environ. Sci. 2016 , 9, 478
Ni/NiS	-230 mV	115	84% after 12 h (initial $j = -10 \text{ mA/cm}^2$)	<i>Adv. Funct.</i> <i>Mater.</i> 2016 , <i>26</i> , 3314
Co-C-N complex	-178 mV	102	80% after 40 h (initial $j = -30 \text{ mA/cm}^2$)	<i>J. Am. Chem. Soc.</i> 2015 , <i>137</i> , 15070
Mo ₂ C	-190 mV	54	80% after 48 h (initial $j = -17 \text{ mA/cm}^2$)	Angew. Chem. 2012 , 124, 12875
Ni ₅ P ₄	-150 mV	59	50% after 20 h (initial $j = -10 \text{ mA/cm}^2$)	Angew. Chem. 2015 , <i>54</i> , 12361
MoC _x	-151 mV	75	27% after 11 h (initial $j = -15 \text{ mA/cm}^2$)	<i>Nat. Commun.</i> 2015 , <i>6</i> , 6512
МоР	-169 mV	70	15% after 10 h (initial $j = -10 \text{ mA/cm}^2$)	Nano Energy 2017 , 32, 511
МоР	-125 mV	48	60% after 40 h (initial $j = -15 \text{ mA/cm}^2$)	Energy Environ. Sci., 2014 , 7, 2624
MoSe ₂ @Ni _{0.85} Se	-117 mV	66	77% after 20 h (initial $j = -20 \text{ mA/cm}^2$)	<i>Electrochim. Acta</i> 2017 , <i>246</i> ,712

Table S2. Comparison of the HER performance of the ALD Ni₃C/CNT with various other nonprecious catalysts in alkaline solution.