Enhanced hydrogen permeability of hafnium nitride nanocrystalline membranes by interfacial hydridic conduction

Chiharu Kura,¹ Sho Fujimoto,² Yuji Kunisada,³ Damian Kowalski,³ Etsushi Tsuji,⁴ Chunyu Zhu,³ Hiroki Habazaki,³ and Yoshitaka Aoki^{3,5}*

1. Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13W8 Kitaku, Sapporo, 060-8628 Japan.

2. Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan.

3. Faculty of Engineering, Hokkaido University, N13W8 Kita-ku, Sapporo, 060-8628 Japan.

4. Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan.

5. JST-PRESTO, 4-1-8 Honcho, Kawaguchi 332-0012, Japan.

*Corresponding author

Yoshitaka Aoki

Associate Prof.

Faculty of Engineering, Hokkaido University, N13W8 Kita-ku, Sapporo, 060-8628 Japan.

Tel: +81-11-706-6752; e-mail: y-aoki@eng.hokudai.ac.jp

Supplementary figures

Fig. S1 RBS depth profiles of $HfN_{0.8}$ and $HfN_{1.0}$ films (600 nm) prepared on glassy carbon substrates. Black lines are the observed and red dots the simulated. Their corresponding chemical composition is $HfN_{0.79}O_{0.031}$ ($HfN_{0.8}$) and $HfN_{1.06}O_{0.033}$ ($HfN_{1.0}$), respectively. The surfaces of both films are oxidized by air, forming 10 nm-thick outerlayer.

Fig. S2 (a) The DFT energies calculated for $2 \times 2 \times 2$ supercells of various hydrogen defect models. (a3) shows the total energies of the system comprising stoichiometric HfN phase (Hf₃₂N₃₂) and 1/2 H₂ gas. (a1) Hf₃₁N₃₂(H_{Hf}): H defect occupying a Hf vacancy of Hf-deficient Hf_{31/32}N phase. (a2) Hf₃₂N₂₄(H_N) : H defect occupying a N vacancy of N-deficient HfN_{24/32} phase. (a4, a5, a6) Hf₃₂N₃₂H₁: HfN phase with an H interstitial at (a4) tetrahedral site of fcc Hf sublattice (^{tet}H), (a5) center of the closest Hf-N bond (^{Hf-N}H) and (a6) center of the closest Hf-Hf bond (^{Hf-Hf}H). (b), (c) Partial DOS of Hf₃₂N₂₄ and Hf₃₂N₂₄H. H 1*s* state is offset by ×2.

Method to determine the *p*_{H2} at TiN_x/Al₂O₃ support interface

When hydrogen permeates through TiN_x/Al_2O_3 support structure, the resulting pressure profiles depend on the properties of each layer. At steady state, hydrogen flux J_{H2} is equivalent to one of Al_2O_3 support, and the hydrogen partial pressure at entrance and exit sides are defined as p_{H2} ' and p_{H2} ''', respectively. Here, p_{H2} ' and p_{H2} ''' are known, the pressure p_{H2} '' at interface between TiN_x and porous alumina can be determined with the flux calibration curve of porous supports by the following way.

The hydrogen permeance of Al₂O₃ support, φ_2 , has been given by equation 1,^{S1}

$$\varphi_2 = \frac{J_{H2}}{(p_{H2}'' - p_{H2}''')} = \alpha + \beta \times \frac{(p_{H2}'' + p_{H2}''')}{2}$$
(1)

where $(p_{H2}"+p_{H2}"')/2$ gives an 'average' pressure of Al₂O₃ support. Accordingly, the plots of φ_2 vs. $(p_{H2}"+p_{H2}"')/2$ show a clear linear relationship.^{S2} Therefore, $p_{H2}"$ can be determined by reading the average pressure corresponding to the J_{H2} from the calibration curve. Hence, $p_{H2}"$ is determined by

$$p_{H2}'' = \frac{-\alpha + \sqrt{\alpha^2 + 2\alpha\beta p_{H2}''' + \beta^2 p_{H2}'''^2 + 2\beta J_2}}{\beta}$$
(2)

Reference

- (S1) N. Itoh, T. H. Wu and K. Haraya, J. Membr. Sci. 1999, 99, 175-183.
- (S2) C. Kura, Y. Kunisada, E. Tsuji, C. Zhu, H. Habazaki, M. P. Müller, R. A. de Souza and Y. Aoki, *Nat. Energy*, 2017, 2, 786-794.