Supporting Information

Construction of electrical "highway" to significantly enhance the redox kinetics of normal hierarchical structured materials of MnO

Huan-Huan Li,^{a‡} Hong-Hong Fan,^{b‡} Chao-Ying Fan,^b Yan-Ping Zheng,^b Yan-Hong Shi,^b Hai-Zhu Sun,^{*b} Guang-Yue Bai^{*a} and Jing-Ping Zhang^{*b}

^a Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals,

Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of

Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR

China

^bFaculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun 130024, China.

Email: jpzhang@nenu.edu.cn; sunhz335@nenu.edu.cn; baiguangyue@htu.cn

Fax: 86-431-85099668.

[‡]*These authors contributed equally.*

Figure S1. The SEM images of $M_x O_y$ /HCNFs under different magnifications.

Figure S2. N₂ adsorption–desorption isotherm and its pore size distribution of the prepared MnO/HCNFs.

Figure S3. TG curve of the prepared MnO/HCNFs under air atmosphere. According to the analysis, the HCNFs content in the MnO/HCNFs composite is calculated to be 15.5 wt%.

Figure S4. Cycling performance of pristine MnO micro-nanospheres prepared by the same method without adding HCNFs at 2000 mA g^{-1} .

Figure S5. (a) Nyquist plots for the fresh cell of MnO/HCNFs and the MnO control. (b) The corresponding relationship between real resistance and frequencies, the slope of the fitting line can be adopted to calculate the ion diffusion coefficient.

Figure S6. Nyquist plots and fitting results of MnO/HCNFs and pristine MnO electrodes before and after the 10th discharge–charge cycle in the voltage range of 0.005-2.9 V.

Figure S7. SEM images of the MnO/HCNFs composite after 100 cycles at 200 mA g⁻¹ under different magnifications.

Table S1 The comparison of Li-storage performance related to key parameters in the practical application in this work with other state-of-the-art works in the literatures.

Materials	Reversible capacity (mAh g ⁻¹)	Current density (mA g ⁻¹)	Cycle number	Ref.
MnO/HCNFs	1093.4 987.6	200 2000	300 800	This work
Cu _{3.8} Ni/MnO nanoparticles	460	1600	200	1
MnO@C nanowire	970	100	100	- 2
	~750	1000	200	
Porous MnO/C-N	513	300	400	3
RGO-MnO-RGO	1155.7	1000	200	- 4
Sandwich Nanostructure	1269.2	2000	500	
MnO/Carbon	1119	500	200	_
Nanopeapods	525	2000	1000	5
MnO nanowire/graphene composite	930	500	500	6
GNs/MnO nanowires	815.3	100	200	7
MnO nanoparticle/carbon nanofiber	655	500	280	8
Carbon-coated MnO microparticulate	~500	100	100	9

References

- 1. J. Lee, H. Zhu, W. Deng and Y. Wu, *Nano Res.*, 2017, **10**, 1033-1043.
- 2. J.-G. Wang, D. Jin, H. Liu, C. Zhang, R. Zhou, C. Shen, K. Xie and B. Wei, *Nano Energy*, 2016, **22**, 524-532.
- 3. L.-F. Chen, S.-X. Ma, S. Lu, Y. Feng, J. Zhang, S. Xin and S.-H. Yu, *Nano Res.*, 2017, **10**, 1-11.
- 4. T. Yuan, Y. Jiang, W. Sun, B. Xiang, Y. Li, M. Yan, B. Xu and S. Dou, *Adv. Funct. Mater.*, 2016, **26**, 2198-2206.

5. H. Jiang, Y. Hu, S. Guo, C. Yan, P. S. Lee and C. Li, *ACS Nano*, 2014, **8**, 6038-6046.

6. S. Zhang, L. Zhu, H. Song, X. Chen and J. Zhou, *Nano Energy*, 2014, **10**, 172-180.

7. Q. Sun, Z. Wang, Z. Zhang, Q. Yu, Y. Qu, J. Zhang, Y. Yu and B. Xiang, ACS Appl. Mater. Interfaces, 2016, **8**, 6303-6308.

8. X. Zhao, Y. Du, L. Jin, Y. Yang, S. Wu, W. Li, Y. Yu, Y. Zhu and Q. Zhang, *Sci. Rep.*, 2015, **5**, 14146.

9. S. Guo, G. Lu, S. Qiu, J. Liu, X. Wang, C. He, H. Wei, X. Yan and Z. Guo, *Nano Energy*, 2014, **9**, 41-49.