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Figure S1 SEM images of NCW@Fe-ZIFs after reaction for (a) 30 min, (b) 1 h, (c) 3 h and (d) 5 

h. 

A very short reaction time (e.g., 30 min or 1 h) results in few Fe-ZIFs nanoparticles formed on 

NCW due to insufficient growth; whereas the excessive reaction time (e.g., 5 h) induces severe 

homogeneous growth of Fe-ZIFs particles.  
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Figure S2 XRD pattern of NCW@Fe-ZIFs. 

 

Figure S3 SEM image of pure Fe-ZIFs prepared through the same procedure described in this 

work except in the absence of NCW. 

It can be seen that the morphology of pure Fe-ZIFs is irregular.   
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Figure S4 FTIR spectra of 2-methylimidazole and the as-prepared Fe-ZIFs. 
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Figure S5 TG curves of 2-methylimidazole and the as-prepared Fe-ZIFs. 
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Figure S6 (a and b) SEM images of Fe3O4/NC composite prepared in the absence of NCW.   
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Figure S7 SEM images of (a) CNT, (b) CNT@Fe-ZIFs, (c) GO, (d) GO@Fe-ZIFs, (e) graphene, 

and (f) graphene@Fe-ZIFs. 

CNT@Fe-ZIFs, GO@Fe-ZIFs and graphene@Fe-ZIFs were prepared through the similar 

approach with NCW@Fe-ZIFs except that CNT, graphene oxide (GO) and grapheme were used as 

the carbon substrates, respectively. The uniform distribution of Fe-ZIFs on carbon substrates is 

clearly observed, demonstrating the wide applicability of this strategy. 
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Figure S8 SEM images of NCW@Co-ZIFs after reaction for (a and b) 30 min, (c) 60 min and (d) 

120 min. 
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Figure S9 SEM images of NCW@Ni-ZIFs after reaction for (a) 2 h, (c and d) 4 h, and (b) 6 h. 
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Figure S10 TG curves of pyrolyzed products derived from (a) NCW@Ni-ZIFs, (b) 

NCW@Co-ZIFs and (c) NCW@Fe-ZIFs under air flow.  

In order to accurately compare the contents of active substances in different MOFs-derived 

materials, NCW@Ni-ZIFs and NCW@Co-ZIFs were calcined under the same conditions (Ar, 500 

oC, 3h) with NCW@Fe-ZIFs.  
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Figure S11 (a) CV curves and (b) the initial three galvanostatic discharge/charge curves of NCW 

electrode. 
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Figure S12 (a) The initial four galvanostatic discharge/charge curves and (b) rate capability of 

Fe3O4/NC electrodes at various current densities. 
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Figure S13 (a) CV curves and (b) the initial three galvanostatic discharge/charge curves of 

NCW@NC electrode. 
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Figure S14 XRD pattern of the NCW@Fe3O4/NC electrode after 200 discharge/charge cycles. 

As shown in Figure S14, no obvious diffraction peaks are observed, so it is believed that 

amorphization of Fe3O4 nanodots may occur after the long-term cycling. 

 

 


