Interfacial Engineering via Inserting Functionalized Watersoluble Fullerene Derivative Interlayers for Enhancing Performance of Perovskite Solar Cells

Tiantian Cao^{a†}, Peng Huang^{a†}, Kaicheng Zhang^a, Ziqi Sun^a, Kai Zhu^a, Ligang Yuan^a, Kang Chen^a, Ning Chen^a* and Yongfang Li^{ab}

^a Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
^b Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.

[†]T.C. and P.H. contributed equally to this work.

*E-mail: <u>chenning@suda.edu.cn</u>.

100 mg C₆₀ or C₇₀ was added to 9.84 mL of 30 wt % H₂O₂ and 7.2 mL of 28 wt % aqueous ammonia. The suspension was vigorously stirred at 50 °C under ambient conditions for 17h. At the end of the reaction, the black suspension was gradually dissolved. The mixtures turned into a yellow solution with some insolubles. After filtration with 0.45 um filter membrane, a transparent yellow solution was obtained. The remaining solution was concentrated to 3 mL, and then 30 mL anhydrous ethanol was added into the solution to produce a yellowish product and remove the excess H₂O₂ and NH₄OH. The precipitate was washed 3 times with anhydrous ethanol and then dried in vacuum oven at 40 °C for 12h.

Scheme S1. Synthetic route of f-C₆₀.

Bond (C _{1s})	Binding Energy (eV)	Area	FWHM (eV)
C-C, C=C	285.68	33564.11	1.56
C-O, C-N	287.40	22529.06	1.23
C=O	289.04	23803.61	1.78

Table S1. Fitting of C_{1s} binding energy of C₆₀ derivative

Table S2. Fitting of N_{1s} binding energy of C₆₀ derivative

Bond (N _{1s})	Binding Energy (eV)	Area	FWHM (eV)
-NH ₂	400.38	10694.58	1.77
$-NH_3^+$	402.16	6326.69	1.51

Table S3. Curve fit results of C_{1s} binding energy of C₇₀ derivative

Bond (C _{1s})	Binding Energy (eV)	Area	FWHM (eV)
C-C, C=C	285.25	41926.39	1.40
C-O, C-N	287.05	22729.48	1.46
C=O	288.85	21689.78	1.59

Table S4. Curve fit results of N_{1s} binding energy of C_{70} derivative

Bond (N _{1s})	Binding Energy (eV)	Area	FWHM (eV)
-NH ₂	400.05	10765.35	1.72
$-NH_3^+$	401.84	8953.82	1.57

The percentage of C=O group of C₆₀ derivative is 29.79 %, which means there are 18 C=O groups on the C₆₀ carbon cage. Combined with C_{1s}/N_{1s} integration area and their sensitive factor (C_{1s} = 0.30, N_{1s} = 0.48), the average molecular formula can be designed as C₆₀O_{~18}(OH)_{~10}(NH₂)_{~8}. According to the same rule, the average molecular formula of C₇₀ derivative can be designed as C₇₀O_{~18}(OH)_{~10}(NH₂)_{~10}.

Figure S1. FT-IR spectra of f-C₆₀ and f-C₇₀.

Figure S2. TGA curves of f-C₆₀ and f-C₇₀.

Figure S3. (a) 0.5 mg/mL C₆₀ and (b) 0.5 mg/mL C₇₀ in toluene, (c) 0.5 mg/mL f-C₆₀ and (d) 0.5 mg/mL f-C₇₀ in ultrapure water.

Figure S4. UV-vis absorption spectra of C_{60} and C_{70} in toluene, f- C_{60} and f- C_{70} in water, all the concentration of the samples are 0.05mg/mL.

Table S5. Summary of the photovoltaic parameters of the Pero-SCs with pristine $f-C_{60}$ and $f-C_{70}$ only as ETL

ETL	Concentration (mg/mL)	$V_{ m oc}\left({ m V} ight)$	$J_{\rm sc}~({\rm mA/cm}^2)$	FF (%)	PCE (%)
/	/	0.92	11.24	39.92	4.15
f-C ₆₀	0.3	0.95	13.35	43.52	5.53
	0.5	0.99	13.39	58.63	7.78
	0.75	0.97	17.83	37.39	6.44
	1	0.86	14.91	38.30	4.91
f-C ₇₀	0.3	0.96	14.08	39.84	5.41
	0.5	0.98	15.21	48.03	7.14
	0.75	0.91	16.74	37.09	5.63
	1	0.92	13.85	33.51	4.27

Figure S5. J-V curves of devices with different concentration of f-C₆₀ and f-C₇₀ ETL.

Figure S6. *J*–*V* characteristics with forward and reverse scans of the Pero-SCs based on C₆₀, $f-C_{60}/C_{60}$ and $f-C_{70}/C_{60}$ ETL.

Table S6. The photovoltaic parameters of Pero-SCs without and with $f-C_{60}$ or $f-C_{70}$ layer measured under reverse and forward voltage scanning.

	$V_{ m oc}\left({ m V} ight)$	$J_{\rm sc}~({\rm mA/cm^2})$	FF (%)	PCE (%)
C ₆₀ Reserve Scan	0.99	19.87	69.38	13.71
C ₆₀ Forward Scan	0.96	18.71	54.47	9.82
f-C ₆₀ /C ₆₀ Reserve Scan	1.04	21.32	76.25	16.97
f-C ₆₀ /C ₆₀ Forward Scan	1.03	21.01	67.47	14.67
f-C ₇₀ /C ₆₀ Reserve Scan	1.03	21.21	72.58	15.94
f-C ₇₀ /C ₆₀ Forward Scan	1.02	20.51	70.39	14.73

Figure S7. Top-view SEM images of perovskite layer on (a) and (d) pristine C_{60} , (b) and (e) f- C_{60}/C_{60} layer, (c) and (f) f- C_{70}/C_{60} layer

Figure S8. AFM images of (a) ITO/C₆₀, (b) ITO/f-C₆₀/C₆₀, and (c) ITO/f-C₇₀/C₆₀.