Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic supplementary information

Carbon Transmission of CO₂ Activated Nano-MgO Carbon Composites Enhances Phosphate Immobilization

Xiangdong Zhu,^{†,‡} Yuchen Liu,[†] Feng Qian,[†] Hua Shang,[†] Xinchao Wei,[⊥] Shicheng Zhang,^{†, §,*}

Jianmin Chen,^{†, §} Zhiyong Jason Ren^{‡,*}

[†] Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China

[‡] Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States

¹Department of Engineering, Slippery Rock University, Slippery Rock, PA 16057, United States

§ Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China

* Corresponding author, E-mail: <u>zhangsc@fudan.edu.cn</u> (Shicheng Zhang), Phone: +86-21-65642297; <u>zhiyong.ren@colorado.edu</u> (Zhiyong Jason Ren), Phone: 303-492-4137, Fax: 303-492-7317.

Fig. S1 (a) Effect of metal type on the BET surface area of MCs activated at different temperature,(b) effect of metal type on the CO yields during the preparation of MCs.

Fig. S2 Effect of $MgCl_2$ loading on the H_2 yields during the preparation of nano-MgO carbon composites.

Sample	Activation temperature (°C)	S _{BET} (m²/g)	S _{micro} (m²/g)	C content (%)	Mg content (%)	Mean MgO particle size (nm) ^a	Mg leaching (%)
MC- Mg-0	800	1054	998	62.4	-	-	-
MC- Mg-2	760	685	586	56.7	6.83	15	32.5
MC- Mg-4	700	437	348	57.9	10.7	31	17.1
MC- Mg-8	700	345	258	51.4	17.0	42	10.3
MC- Mg-16	700	297	218	42.7	25.1	50	7.75
а	Concluded			from	7	ſEM	images.

Table S1 Basic parameters for the selected nano-MgO carbon composites used in the immobilization of phosphate

Samula	Metal leaching	P adsorption ^a	P adsorption	P adsorption
Sample	(mg/L)	(mg P/g MC)	(mg P/g M)	(mol P/mol M)
MC-Mn-8	16.1	130	357	0.82
MC-Mg-8	6.62	91	325	0.42
MC-Al-8	3.93	16	45.8	0.08
MC-Fe-8	0.13	3	5.96	0.01

Table S2 Metal leaching and phosphate adsorption for the different nano metal oxide carbon composites (P: phosphorus, M: metal oxide, MO_x)

^{*a*} Concluded from Langmuir maximum capacity.

Fig. S3 XRD patterns of the as-prepared nano-metal oxide carbon composites after phosphate adsorption

Fig. S4 XRD patterns of the as-prepared nano-MgO carbon composites and phosphate adsorbed samples (samples with optimal porosity are selected for analysis).

Note: Unmarked XRD signals represented the $CaCO_3$ and SiO_2 compositions derived from biomass.

Adaarbanta	P adsorption	P adsorption	Deference	
Adsorbents	(mg P/g adsorbent)	(mg P/g MgO)	Reference	
MgO nanoflake-modified diatomite	52.1	114	34	
Artemia egg shell supported nano-	22.7		12	
Mg(OH) ₂ composite	52.7	-		
Mg-enriched engineered carbon	23.8	74.5	16	
Mg-enriched biochar	117	-	7	
MgO decorated magnetic biochar	121	355	5	
MgO	500	500	this study	
Nano-MgO carbon composite (MC-Mg-	204	705	this study	
16)	294	703		

Table S3 Comparisons of maximum phosphate adsorption capacity of different Mg-enriched adsorbents

Fig. S5 XPS spectra of the P 2p2/3 regions for P-adsorbed nano-MgO materials.

Fig. S6 XPS spectra of the Mg 2p regions for P-adsorbed nano-MgO carbon composites (CO₂ activation).

Sample	$S_{\rm BET}$ (m ² /g)	C content (%)	Mg content (%)	Mean MgO particle size (nm) ^{<i>a</i>}	Mg leaching (%)
MC-Mg-2 (CO_2 activation)	685	56.7	6.83	15	32.5
MC-Mg-2 (N_2 activation)	401	69.7	3.20	9	12.4

Table S4 Basic parameters for the N_2 and CO_2 activated *MC-Mg-2* samples

^{*a*} Concluded from TEM images.

Fig. S7 SEM (a, b) and TEM (c, d) images for the N₂ and CO₂ activated *MC-Mg-2* samples.

Sample	Mg leaching (mg/L)	P adsorption (mg P/g MC)	P adsorption (mg P/g MgO)	P adsorption (mol P/mol Mg)	n(MgHPO ₄): n(Mg(H ₂ PO ₄) ₂) ^a
MC-Mg-2 (CO ₂ activation)	11.1	22	193	0.25	2.57
MC-Mg-2 (N_2 activation)	1.98	4	75	0.10	3.18

Table S5 Characteristics of the Mg release and phosphate adsorption for N_2 and CO_2 activated *MC*-*Mg-2* samples (P: phosphorus)

^a Calculated from Mg 2p XPS spectra of P-adsorbed nano-MgO carbon composites.

Fig. S8 XPS spectra of the P 2p2/3 regions for P-adsorbed *MC-Mg-2* sample from N₂ activation.