Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Structural transition in orthorhombic $Li_{5-x}H_xLa_3Nb_2O_{12}$ garnets induced by a concerted lithium and proton diffusion mechanism

María Luisa Sanjuán,^{1*} Alodia Orera,¹ Isabel Sobrados,² Antonio F. Fuentes,³ and Jesús Sanz²

¹Instituto de Ciencia de Materiales de Aragón (CSIC - Universidad de Zaragoza), Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain

²Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid, Spain

³Cinvestav Unidad Saltillo, Apartado Postal 663, 25000 Saltillo, Coahuila, México

Fig. S1: Profile fit of the PXRD pattern of as-prepared $Li_5La_3Nb_2O_{12}$ with S.G. Ia-3d (230), a=12.7967(3) Å.

Fig. S2: XRD pattern of as-aged LLNO. The main peaks of possible Li-containing second phases are indicated with $^(LiOH,H_2O)$, + (LiOH) and * (Li₂CO₃).

Fig. S3. Raman spectra of aged LLNO after successive preparation steps: (a) as aged; (b) after washing and (c) after 1h homogenization at 200 °C. The non-washed sample presents strong LiOH.H₂O and LiOH bands (3575 and 3675 cm⁻¹, resp., marked with *), as well as a weak peak from Li_2CO_3 at 1093 cm⁻¹ (marked with a bar). Washing suppresses these secondary phases without affecting the bands from the garnet phase (see section 3.4.1). The short annealing at 200 °C sharpens the bands and increases spectral resolution.

Fig. S4: TG curve of aged Li₅La₃Nb₂O₁₂ after washing in distilled water to remove second-phases.

Fig. S5: XRD pattern and phase assignment of the TG residue of H-LLNO after 800 °C showing $LiLa_2NbO_6$ and $LaNbO_4$ as the main decomposition phases.

Fig. S6: DSC curve of H-LLNO between RT and 200 °C, displaying an endothermic event at 165 °C on heating and an exothermic one at 151 °C on cooling.

Fig. S7. Profile fit of the RT XRD pattern (t=3s, above) in the $P2_12_12_1$ (#19) SG and selected regions measured with t=6s showing low intensity reflections (below).

Fig. S8. Profile fit of the XRD pattern at 200 °C in the *I*-43*d* (#220) SG. X^2 : 3.60.

Fig. S9: Tree depicting the relation between the SGs of the high and low temperature phases of H-LLNO (*I*-43*d* and $P2_12_12_1$, respectively). Adapted from the Bilbao Crystallographic Server (ref. 23 in the main text).

Table S1

Relevant bond-distances in the low-temperature phase of H-LLNO derived from the fit of the RT PND in the $P2_12_12_1SG$.

	La5 - O7 :2.55
La1 - O1 : 2.47	La5 - O9 : 2.63
La1 - O3 : 2.58	La5 – O16 : 2.44
La1 - O10 : 2.54	La5 – O17: 2.45
La1 - O11 : 2.51	La5 – O19: 2.48
La1 - O13 :2. 55	La5 – O21: 2.44
La1 – O15 : 2.51	
La1 – O22: 2.66	La6 - O5 :2.56
La1 – O23 : 2.58	La6 - O6 :2.48
	La6 - O8 :2.47
La2 - O1 : 2.44	La6 - O9 : 2.41
La2 - O2 :2.50	La6 – O17 : 2.66
La2 - O10 : 2.50	La6 – O18: 2.54
La2 - O12 : 2.63	La6 – O20: 2.67
La2 - O13 :2.71	La6 – O21: 2.51
La2 – O14: 2.58	
La2 – O22 : 2.43	Nb1-010 : 2.11
La2 – O24 : 2.54	Nb1 – 011: 2.31
	Nb1 – O12: 1.98
La3 - O2 :2.52	Nb1 - O16 : 1.81
La3 - O3 :2.40	Nb1 - O17 : 1.84
La3 - O11 : 2.59	Nb1 - O18 : 1.89
La3 - O12 : 2.51	
La3 – O14 : 2.57	Nb2 - O1 :1.84
La3 – O15: 2.47	Nb2 - O2 :1.84
La3 – O23 : 2.54	Nb2 - O3 : 2.02
La3 – O24: 2.42	Nb2-019 : 2.23
	Nb2 – O20: 2.17
La4 - O4 :2.50	Nb2 – O21: 1.97
La4 - O6 :2.68	
La4 - O7 :2.63	Nb3-04 : 1.90
La4 - O8 : 2.54	Nb3 – O5 : 1.92
La4 – O16 : 2.45	Nb3 – O6 : 2.05
La4 – O18: 2.40	Nb3 – O22 : 2.13
La4 – O19: 2.46	Nb3 – O23: 2.15
La4 – O20: 2.45	Nb3 – O24: 1.87
La5 - O4 :2.74	Nb4 – 07 : 2.16
La5 - O5 : 2.54	Nb4 – 08 : 2.13

Nb4 – O9 : 1.97
Nb4 – O13 : 1.91
Nb4 – O14: 1.87
Nb4 – O15 : 1.97
Li1 - O1 :1.824
Li1 - O5 :1.93
Li1 - O13 : 1.90
Li1 – O17 : 2.10
Li2 - O2 :1.87
Li2 - O4 : 2.19
Li2 – O14 : 2.02
Li2 – 016: 1.95
Li3 - O3 :1.94
Li3 - O6 :1. 87
Li3 – 015 : 2.06
Li3 – 018 : 2.06
1.1 07 0.00
Li4 - 07 : 2.00
Li4 - 011 : 1.80
Li4 - 019 : 1.96
LI4 – 023 : 1.83
115 - 08 - 1 98
$15 - 010 \cdot 1.90$
$15 - 020 \cdot 2.14$
$15 - 020 \cdot 2.14$
LIJ 022.1.0J

Li6	- 09 : 2.01
Li6	- 012 : 1.96
Li6	- 021 : 2.00
Li6	- 024: 2.19
H1	- 08 : 1.02
H2	- 023 : 0.98
H3	- 010: 1.03
H4	- 020: 1.17
H5	- 011 : 1.03
H6	- 022 : 1.10
H7	- 07 : 0.92
H8	- 019: 0.90
H1	- H3 : 1.51
H1	- H4 : 2.77
H1	- H6 : 2.69
H3	- H4 : 2.30
H3	- H6 : 3.44
H2	- H5 : 2.41
H2	- H7 : 1.88
H2	- H8 : 1.89
H5	- H7 : 1.76
H5	- H8 : 2.04

Fig. S10. Unit cell resulting from fitting the RT PND pattern with the $P2_12_12_1$ SG. Atom coordinates and occupancies are given in Table 1 of the main text.

Table S2. Relevant distances in the high temperature phase of H-LLNO derived from the fit of the 200 °C PND in the *I*-43d SG.

La1 - O1 : 2.57 x2	Li3 - O1 : 2.28
La1-O1 : 2.56 x2	Li3 - O1 : 1.82
La1-O2:2.44 x2	Li3 - O1 : 2.43
La1-O2:2.58 x2	Li3 - O2 :2.51
	Li3 - O2 : 2.61
Nb1-O1 : 2.07 x3	Li3 - O2 : 2.11
Nb1-O2 : 1.94 x3	
	H1 - O1 : 0.94
Li1(12b) - O1 : 1.93 x4	
Li2(12a) - O2 : 1.99 x4	

Fig. S11. Unit cell of the high temperature phase (*I*-43*d* SG), showing Li1 and Li2 tetrahedra, Nb octahedra and H bonding to Li1 tetrahedra. Large spheres represent octahedral Li ions (Li3).

Fig. S12. Profile decomposition of the OH⁻ stretching region of the RT Raman spectrum.

Fig. S13. Profile decomposition of the ¹H MAS-NMR spectrum ($v_r = 10$ KHz).