Supporting Information

Partially Phosphorized SnO₂/Graphene Nanocomposite for Highly Reversible Pseudocapacitive Lithium-Ion Storage

- ^a College of Chemistry, Dalian University of Technology, Dalian 116024, China.
- ^b Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
- $*Corresponding \ author: \underline{rensz@dlut.edu.cn}; \underline{gzcao@u.washington.edu}\\$

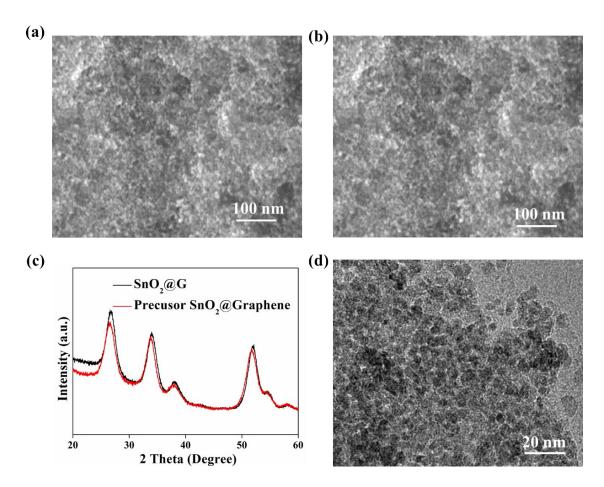


Figure S1. Scanning electron microscope (SEM) images of (a) $SnO_2@G$ -Pre composite and (b) $SnO_2@G$ composite after annealing; (c) XRD curves of $SnO_2@G$ composite before and after annealing; (d) transmission electron microscope image (TEM) of $SnO_2@G$ after annealing.

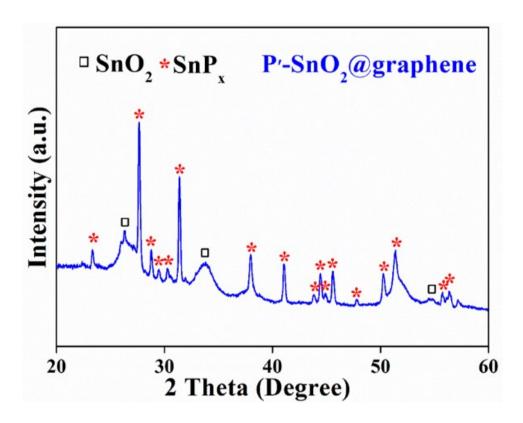


Figure S2. XRD pattern of P-SnO₂@G-10 phosphorized at low molar ratio of Sn and P (1:10).

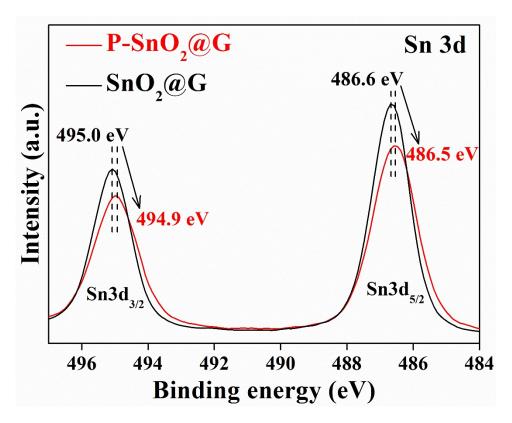


Figure S3. High-resolution XPS spectra of Sn 3d in SnO₂@G and P-SnO₂@G.

Table S1. The element composition of $P-SnO_2@G$ estimated based on Energy dispersive spectrometer (EDS).

Element	Weight%	Atomic%
С	11.52	35.88
N	2.15	1.14
O	13.31	29.98
P	10.43	12.60
Sn	62.59	20.41

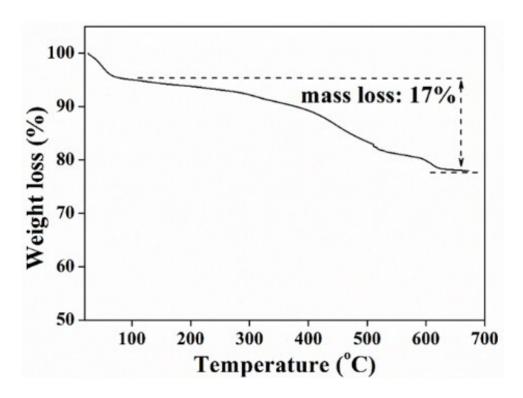


Figure S4. Thermogravimetric analysis curve of as-synthesized SnO₂@G-Pre composite

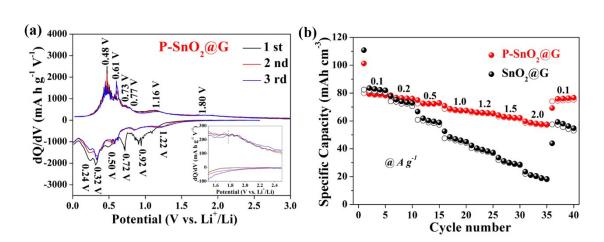


Figure S5. (a) Differential charge - discharge capacity plots of as-synthesized P-SnO₂@G composite electrode at a current density of 0.1 mA g^{-1} for the first three cycles; (b) Volumetric capability of SnO₂@G and P-SnO₂@G obtained at various current densities from $0.1 \text{ to } 2 \text{ A g}^{-1}$, then back to 0.1 A g^{-1} in the potential window of $0.01 \sim 3.0 \text{ V}$.

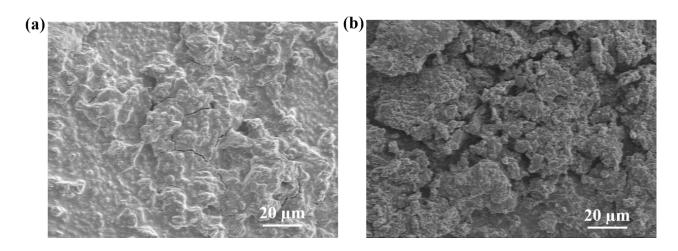


Figure S6. Ex situ SEM images of (a) P-SnO₂@G; (b) SnO₂@G after cycling

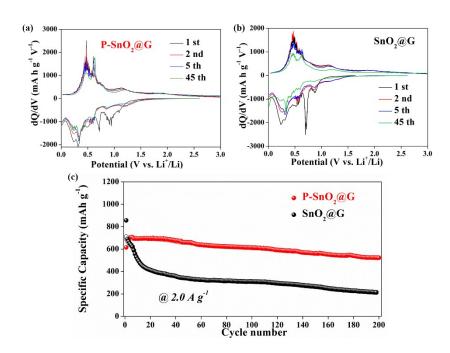


Figure S7. Differential discharge and charge capacity plots (DCPs) for the 1st, 2th, 5th and 45th cycles of (a) $SnO_2@G$; (b) $P-SnO_2@G$; (c) Cycling stability (200 cycles) of $SnO_2@G$ and $P-SnO_2@G$ at 2.0 A g^{-1} in the potential of $0.01 \sim 3.0 \text{ V}$.

Table S2. The R_s , R_f , and R_{ct} and Li^+ diffusion coefficients of $SnO_2@G$ and $P-SnO_2@G$ electrode after 50 cycles at current density of 1.0 A g^{-1} .

Sample	SnO ₂ @G	P-SnO ₂ @G
$R_s(\Omega)$	1.43	4.17
$ m R_f(\Omega)$	47.71	115.80
$R_{ct}(\Omega)$	92.73	157.30
D_{Li+} (cm ² s ⁻¹)	6.50×10 ⁻¹⁴	1.36×10 ⁻¹³

(Note: R_s represents the combined ohmic resistance of the battery; R_f is resistance of surface film; R_{ct} is the value of the charge transfer resistance, fitted from Figure 5a)

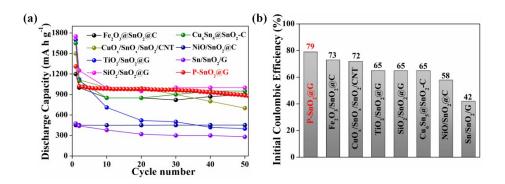


Figure S8. (a) Comparison of capacity retention and (b) initial coulombic efficiency of P-SnO₂@G (0.01-3 V, 0.1 A g⁻¹) with multiple components composite anodes including Fe₂O₃@SnO₂@C (0.01-3 V, 0.2 A g⁻¹), CuO_x/SnO_x/SnO₂/CNT (0.005-2.7 V, 0.1 A g⁻¹), TiO₂/SnO₂/C (0.01-3 V, 0.1 A g⁻¹), SiO₂/SnO₂@G (0.01-2.5 V, 0.5 A g⁻¹), Cu₆Sn₅@SnO₂-C (0.05-3 V, 0.2 A g⁻¹), NiO/SnO₂/C (0.01-3 V, 0.8 A g⁻¹), Sn/SnO₂@C (0.05-1.5 V, 0.05 A g⁻¹). References is same with the main article.