Supporting Information

N-rich Carbon Coated CoSnO₃ Derived from Insitu Construction of Co-MOF with Enhanced Sodium Storage Performance

Guoqiang Zou¹, Hongshuai Hou*¹, Ganggang Zhao¹, Peng Ge¹, Dulin Yin², and Xiaobo Ji¹

¹ College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.

² National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources, Hunan Normal University, Changsha 410081, P. R. China

Figure S1 The color of CoSnO₃-MOF-60 (a), CoSnO₃-MOF-120 (b), and CoSnO₃-MOF-240 (c)

Figure S2 N_2 adsorption-desorption isotherms of the CoSnO₃-ZIF-60 and CoSnO₃-ZIF-240.

Figure S3 The elemental mapping under TEM of the CoSnO₃-ZIF-120.

Figure S4 The XRD pattern of the CoSnO₃-NC-120.

Figure S5 N_2 adsorption-desorption isotherms of the CoSnO₃-NC-60 (a) and CoSnO₃-NC-240 (c).

Figure S6 (a) The XPS survey of the related samples. (b) C 1s resolution spectrum of $CoSnO_3$ -NC-120.

Figure S7 (a) the charge capacities of the as-prepared specimens. (b) the discharge/charge profiles of the half-cells utilized $CoSnO_3$ as electrodes.