Supporting information

EMIMBF₄–GBL binary electrolyte working at -70 °C and 3.7

V for a high performance graphene-based capacitor

Jiarui Tian, Chaojie Cui, Qing Xie, Weizhong Qian*, Chi

Xue, Yonghua Miao, Ying Jin, Gang Zhang, Baohua

Guo

SI-1. Characterization methods

All NMR measurements were performed on a JNM-ECA600, Sodium 2,2-Dimethyl-2-silapentane-5-sulfonate (DSS) was dissolved in D₂O as external standard (δ_{DSS} =0). ATR-IR spectra were recorded at room temperature on a Nicolet 6700FTIR (resolution: 0.35 cm⁻¹) equipped with an ATR single reflection cell. The high-resolution scanning electron microscopy (SEM) observation was conducted on a JEOL, JSM-7401 at 3.0 kV. TEM experiment was performed on a high-resolution transmission electron microscope (JEOL, JEM-2010, exited at 120 kV). Brunauer-Emmett-Teller (BET) surface area was recorded in a Quantachrome automated surface area and porosity analyzer with N₂ as the adsorption gas. Differential scanning calorimetry (DSC) was obtained using a differential scanning calorimeter (DSC-60), from -80 to 35 °C at a heating rate of 10 °C min⁻¹. The viscosities of binary electrolytes were measured by an MCR301 rheometer (Anton Paar) using a conical geometry, shear rate was set at 100 s⁻¹. An FE28 conductivity meter (Mettler-Toledo) was used for conductivity measurement of the electrolytes.

SI-2. Relationship between the viscosity and ionic conductivity.

Figure S1. Walden plots of different binary electrolytes.

SI-3. NMR characterization

3.1 NMR spectra of different electrolytes

Figure S2-1. NMR pattern of pure EMIMBF₄(E).

Figure S2-2. NMR pattern of E2G1.

Figure S2-3. NMR pattern of E1G1.

Figure S2-4. NMR pattern of E1G2.

Figure S2-5. NMR pattern of E2P1.

Figure S2-6. NMR pattern of E1P1.

Figure S2-7. NMR pattern of E1P2.

SI-4. ATR-IR results

4.1 ATR-IR spectra

Figure S3-1. ATR-IR of EMIMBF₄ and binary electrolytes of EMIMBF₄-

GBL.

Figure S3-2. ATR-IR of EMIMBF₄ and binary electrolytes of EMIMBF₄-PC.

SI-5. EIS fittings by the model of Randles circuit.

Figure S4. EIS fittings by the model of Randles circuit.

 Table S1.
 Fitting data of resistance in different electrolytes at different

Electrolyte	Temperature (°C)	Rs (Ω)	Rct (Ω)	₩ (Ω·s ^{0.5})	
E	20	4.3	nearly disappeared	3.0	
	10	10.3	0.7	10.0	
	-10	18.5	0.9	15.1	
E1G1	20	1.3	0.6	1.0	
	-30	2.9	0.5	8.0	
	-50	5.8	1.0	29.0	
	-70	33.4	9.6	245.0	

temperatures.

SI-6. Capacitance and energy density of GNF in E1G1.

Figure S5-1. Specific capacitance of E1G1 EDLC at various current density.

Figure S5-2. Energy density of E1G1 EDLC at different power density.

SI-7. Linear fitting of $Ln\sigma$ with 1000/(T-T_g).

Figure S6. Fitting plot of conductivities of mixture electrolytes and pure

EMIMBF₄.

SI-8. Electrochemical performance of previously reported low-temperature

high-voltage electrolytes and EIG1 $_{\circ}$

Table S2. Electrochemical performance of previously reported low-temperature

high-voltage electrolytes and EIG1.

Electrolyte	Electrode F	Potential/V	,C _{electrode} /F g ⁻¹	E _{SC} /W h kg ⁻¹ a)	Temperature/º0	Current density/ scan rate	Ref
EMIMBF₄-GBL (E1G1)	GNF (1274 m² g ⁻¹)		157	73.8	-30	0.5 A g ₋₁	This work
		3.7	153	72.3	-50	0.2 A g ₋₁	
			131	61.3	-70	0.1 A g ₋₁	
(PIP ₁₃ FSI) _{0.5} (PYR ₁₄ FSI) _{0.}	Reduced ₅ graphene film	3.5	135	57.4	0	1 m)/ a-1	¹ 29
			125	53.1	-20		
			96	40.8	-30	I IIIV S	
			55	23.4	-40		
(PIP ₁₃ FSI) _{0.5} (PYR ₁₄ FSI) _{0.5}	a-MEGO ₅ (~2000 m² g⁻¹)	3.5	120	40.6	Room	20 mV s ⁻¹	30 1
			130		temperature		
		2	120	37.5	-40	1 mV s ⁻¹	
		3	100	31.25	-50		
(BMIBF ₄) _{0.5} (BMPBF ₄) _{0.5}	; A-NPG	3.5	100	-	Room	5 mV s⁻¹	¹ 31
			109		temperature		
			92	46.4	-50		
	AC	2.7	117	27.8	20		¹ 32
			117	26.6	-40	$0.1 \wedge a^{-1}$	
SBFBF4+AN/DBC-20%			116	25.8	-50	0.1 A g	
			114	22.8	-60		
PYRNO₃+GBL	AC(~1500	2	129	17.4	20	0.17 A	47
	m² g-1)		119	16.5	-40	g⁻¹	
DAIMBF ₄ +PC	AC(~2400) 2.5	37	8.0	25	0.32 A g ⁻¹	48
	m²/g)		30	6.5	-30		
PYR₁₄TFSI+BuCN	AC(~3000 m²/g) 2.5	2 5	130	28.2	25	0.5 A g ⁻¹	40
		125	27.1	-20	0.2A g ⁻¹	49	

a)Calculated by formulas: $E_{capacitor}=C_{capacitor}U^2/2$; $C_{capacitor}=C/4$