Supporting Information

$Li_{0.33}La_{0.557}TiO_3$ ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolyte for all-solid-state lithium batteries

Pei Zhu^a, Chaoyi Yan^a, Mahmut Dirican^a, Jiadeng Zhu^a, Jun Zang^a, R. Kalai Selvan^a, Ching-Chang Chung^b, Hao Jia^a, Ya Li^a, Yasar Kiyak^a, Nianqiang Wu^c, Xiangwu Zhang^{a*}

^a Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27695-8301, United States

^b Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7909, United States

^c Department of Mechanical & Aerospace Engineering, West Virginia University, Morgantown,
 WV 26506, United States

*Email: <u>xiangwu_zhang@ncsu.edu</u>

	Crystallinity of polymer matrix after adding of fillers	Concentration of nanofiber fillers in the polymer matrix	Proposed main conduction mechanism	lonic conductivity (S cm ⁻¹)	Stability and voltage window of Li/composite electrolyte/Li cell
LLTO nanofiber + PAN (Ref 14)	Not changed	Compared 5 LLTO concentrations (0%, 5%, 10%, 15% and 20%)	 Fast ion transport on LLTO nanofiber surface; 3D ion- conducting network 	2.4 × 10 ⁻⁴	No information
LLZO nanofiber + PEO (Ref 15)	No information	One LLZO/PEO ratio (1:4)	3D structure provides long- range ion transfer	2.5 × 10 ⁻⁴	Voltage value of around ± 300 mV at 0.5 mA cm ⁻² over 1000 h
LLZO nanofiber + PAN (Ref 27)	Not changed	Compared 6 LLZO concentrations (0%, 1%, 2.5%, 5%, 10% and 15%)	 Increased Li⁺ dissociation from the ClO₄⁻anion; Preferred Li⁺ diffusion at the LLZO/polymer interface 	1.31 × 10 ⁻⁴	Voltage value of around ± 400 mV at 50 μA cm ⁻² over 89 h
Our work	The crystallinity of PEO was lowered.	Compared 4 LLTO concentrations (0%, 5%, 10%, 15% and 20%)	 Creation of more amorphous region in the PEO matrix Continuous ionic conductive pathways provided by 1D LLTO nanofibers 	2.4 × 10 ⁻⁴	Voltage value of around ± 115mV at 0.5 mA cm ⁻² over 720 h

Table S1. Comparasion between our research and the reported work in literature.

Figure S1. (a) Diameter distributions and average diameters of LLTO nanofibers calcined at 900 °C for 2 h. (b) EIS curve of LLTO plate at room temperature. (c) XRD patterns of the PEO/LiTFSI/LLTO solid composite electrolytes without and with 15% LLTO nanofiber/particle, showing the influence of LLTO morphology on the crystalline phase of PEO.

Figure S2. SEM images of (a) PEO/LiTFSI, (b) PEO/LiTFSI/LLTO 10 wt.%, (c) PEO/LiTFSI/LLTO 15 wt.%, and (d) PEO/LiTFSI/LLTO 20 wt.% solid electrolytes.

Figure S3. Ionic conductivities of the PEO/LiTFSI/LLTO solid composite electrolytes with different LLTO nanofiber contents at room temperature.

Figure S4. (a) EIS result of the PEO/LiTFSI/LLTO particle solid composite electrolyte with 15% LLTO particles at room temperature. (b) Arrhenius plot of the PEO/LiTFSI/LLTO particle solid composite electrolyte with 15% LLTO particles.