(Supporting Information)

High Energy Density for Rechargeable Metal-Free Seawater Batteries: Phosphorus/Carbon Composite as a Promising Anode

Material

Yongil Kim^a, Soo Min Hwang^{*a}, Hyein Yu^a, and Youngsik Kim^{*a,b}

^aSchool of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea ^bEnergy Materials and Devices Lab, 4TOONE Corporation, UNIST-gil 50, Ulsan 44919, Republic of Korea

*Corresponding Authors: smhwang@unist.ac.kr (S. M. Hwang); ykim@unist.ac.kr (Y. Kim)

Fig. S1 Comparison of specific energy density-voltage properties of full-cell systems, such

as SIBs, LIBs, and seawater batteries

Fig. S2 SEM image of PC composite particles

Fig. S3 Ex-situ XRD patterns of pristine, charged, and discharged PC composite electrodes in

Na-ion half-cells

Fig. S4 (a) Seawater-flow cell tester and cell components, and examples of charge–discharge voltage profiles of seawater-flow cells with (b) Na metal and (c) hard carbon anodes

Fig. S5 (a) Charge–discharge voltage profiles of seawater-flow half-cell (Na metal | Seawater) over 20 cycles, and (b) enlarged differential capacity plots (dQ/dV) of voltage profile of seawater- flow half-cell

Fig. S6 Rate performance of seawater-flow full-cell using PC composite anode; capacity retention after cycling with (a) fixed charging current and (b) increasing current