Supporting Information

Metal–organic Framework Derived CoTe₂ Encapsulated on Nitrogen-doped Carbon Nanotubes Frameworks: Highefficiency Bifunctional Electrocatalyst for Overall Water Splitting

Xiang Wang, Xiaokang Huang, Wenbin Gao, Yu Tang, Pengbo Jiang, Kai Lan, Renzi Yang, Bin Wang, and Rong Li*

State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China. E-mail: liyirong@lzu.edu.cn; Fax: +86-931-891-2582; Tel: +86-18919803060.

Characterization

The scanning electron microscopy (SEM) images were observed on a Hitachi S-4800 (Chiyoda-ku, Tokyo, Japan) operated under high vacuum with an accelerating voltage of 7 kV. Transmission electron microscopy (TEM) images and high resolution transmission electron microscopy (HRTEM) images were recorded on a FEI (TecnaiTM F30, USA) microscope with capabilities for energy-dispersive Xray spectroscopy (EDX, TECNAI G2, USA) operating at 200 KV. The crystal structure data were acquired on a on a Rigaku D/max-2400 diffractometer, using Cu-K α radiation as X-ray source in the range of 10-90°. Raman spectra were obtained on Jobin-Yvon LabRam HR80 spectrometer (Horiba Jobin Yvon, Inc.) with 532 nm laser excited. The surface area and pore sizes were measured using the Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) methods by utilizing a Tristar II 3020 instrument. XPS measurements were performed on a PHI-5702 instrument equipped with an Mg-K α source (1253.6 eV) at room temperature under 3×10⁻⁸ Torr.

OER measurements

The OER activities of all samples were measured on an electrochemical workstation (CHI model 760E, Shanghai Chenhua Instrument Factory, China) and investigated by the linear sweep voltammetry (LSV) method within the range of 1.0 to 1.8 V vs. RHE at a slow scan rate of 5 mV s⁻¹. The working electrodes were scanned several times until the signals were stabilized, and then the data were collected. For all testing, a flow of O2 was used to purge the electrolyte to ensure the O_2/H_2O equilibrium at 1.23 V. The over-potentials (h) at 10 mA cm⁻² were calculated as follows: $\eta = E$ (vs. RHE) - 1.23, considering O₂/H₂O equilibrium at 1.23 V. The Tafel slope was calculated according to the Tafel equation as $\eta = a + q$ b $\log |J|$, where η denotes the over-potentials, b denotes the Tafel slope, and J denotes the current density. The stability was tested by means of chronopotentiometry and chronoamperometry measurements. The stability of catalyst was also evaluated by cycling the electrode potential (1.0 V to 1.7 V) for 2000 cycles at 0.2 V s⁻¹, after which the LSVs were recorded. Electrochemical impedance spectra (EIS) were measured in a frequency range from 100 kHz to 0.01 Hz at 5 mV and recorded at 1.50 V in O₂-saturated 1.0 M KOH solution. The electrochemically active surface areas of the samples were investigated from double-layer charging curves using cyclic voltammograms (CVs, 1.09 V to 1.14 V).

HER measurements

The HER activities of all samples were measured on the same electrochemical workstation and investigated by LSVs within the range of -1.0 to 0.2 V vs. RHE at a slow scan rate of 5 mV s⁻¹. 1.0 M KOH or 0.5 M H₂SO₄ (purged with pure N₂)

was used as the electrolyte. The Tafel slope was calculated according to the Tafel equation. The stability was tested by means of chronoamperometry measurements. It was also evaluated by cycling the electrode potential (-0.6 V to 0.2 V) for 2000 cycles at 0.2 V s⁻¹, after which the LSV were recorded.

Fig. S1 XRD patterns of ZIF-67.

Fig. S2 TEM image of CoTe₂@NCNTFs.

Fig. S3 EDS spectrum of the CoTe₂@NCNTFs

Fig. S4 SEM image of bulk CoTe₂.

Fig. S5 Voltammograms of the (a) CoTe₂@NCNTFs, (b) CoTe₂@NC and (c) bulk CoTe₂ at various scan rate (20-200 mV s⁻¹) in 1.0 M KOH solution. (d) The equivalent electrical circuit image

Table S1 The atomic percentage distributions of C, N and O in

Matariala	Elemental composition (at %)				
Iviaterials	С	Ν	0		
CoTe ₂ @NCNTFs-600 °C	77.74	4.07	7.71		
CoTe ₂ @NCNTFs-700 °C	80.36	3.52	5.34		
CoTe ₂ @NCNTFs-800 °C	83.29	2.96	3.14		

electrocatalysts (C, N and O detected by Elemental Analyzer)

Table S2. Comparison of the OER performance of some reported high

Catalysts	Electrolyte	Mass Loading	η ¹⁰ (mV	Tafel slope	Reference
		(mg cm ⁻²)	vs. RHE)	(mV dec ⁻¹)	
CoTe ₂ @NCNTFs	1.0 M KOH	0.285	330	82.8	This work
CoTe ₂ @N-GC	1.0 M KOH	1.0	300	90	ACS Appl. Mater. Interfaces.,
					2017, 9, 36146-36153
CoTe ₂ @CoO _x	1.0 M KOH	0.28	380	58	ACS Catalysis, 2016, 6, 7393-7397.
CoTe ₂ Nanofleeces	0.1 M KOH	0.25	357	32	Angewandte Chemie,
CoTe Nanofleeces	0.1 M KOH	0.25	367	73	2017, 56, 7769-7773
CoTe ₂ /CNT	1.0 M KOH	0.405	291	44.2	The Journal of Physical Chemistry C,
CoTe ₂ NW	1.0 M KOH	0.405	323	85.1	2016, 120, 28093-28099.
ECT-Te-CoO	1.0 M KOH		343	64.2	Nano Lett,
ECT-Te-Co _{0.5} Fe _{0.5} O	1.0 M KOH		326	39.3	2016, 16, 7588-7596
ECT-Te-	1.0 M KOH		276	49.6	
Co _{0.37} Ni _{0.26} Fe _{0.37} O					
Cu7Te4 nanosheets	0.1 M KOH	0.20	460	103	Nano Energy, 2017, 41, 780-787
$Zn_{0.1}Co_{0.9}Se_2$	1.0 M KOH	0.285	340	43.2	J. Mater. Chem. A.
					2017, 5, 17982-17989.
Zn-doped CoSe ₂ /CFC	1.0 M KOH		356	88	ACS Appl. Mater. Interfaces,
					2016, 8, 26902-26907
CoSe ₂ /CF	1.0 M KOH	2.9	297	41	Nano Research,
					2016, 9, 2234-2243
$CoSe_2$	1.0 M KOH	1.0	430	50	ACS Appl. Mater. Interfaces.
NiSe ₂	1.0 M KOH	1.0	250	38	2016, 8, 5327-5334
Co-P/NC	1.0 M KOH	0.283	350	52	Chem. Mater., 2015, 27, 7636-7642
CoP/rGO	1.0 M KOH	0.28	340	66	Chem. Sci., 2016, 7, 1690-1695
CoP Hollow Polyhedrons	1.0 M KOH	0.102	400	57	ACS Appl. Mater. Interfaces,
					2016, 8, 2158-2165
PNC/Co	1.0 M KOH	0.35	370	76	J. Mater. Chem. A,
					2016, 4, 3204-3209
Co@Co3O4/NC	0.1 M KOH	0.21	410	54.3	Angewandte Chemie,
					2016, 55, 4087-4091
N/Co-doped	0.1 M KOH	0.714	430	292	Adv. Funct. Mater.,
PCP//NRGO					2015, 25, 872-882
Co@Co ₃ O ₄ @NMCC/rG	1.0 M KOH	0.298	340	71	Dalton Trans., 2016, 45, 5575-5582
0					
Co ₃ O ₄ @C-MWCNTs	1.0 M KOH	0.325	320	62	J. Mater. Chem. A,
					2015, 3, 17392-17402.

performance Co-based electrocatalysts in alkaline solution.

Table S3. Comparison of the HER performance of some reported high

Catalysts	Electrolyte	Mass Loading	η ¹⁰ (mV	Tafel slope	Reference
		(mg cm ⁻²)	vs. RHE)	(mV dec ⁻¹)	
CoTe ₂ @NCNTFs	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	0.285	240	61.67	This work
	1.0 M KOH		208	58.04	
CoTe ₂ NP	$0.5 \text{ M H}_2\text{SO}_4$		246	41.0	Chem. Commun.,
CoTe ₂ MS	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$		330	45.9	2015, 15, 17012-17015
CoTe NSs/CoTe ₂ NTs	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	4.85	172	57.1	ACS Appl. Mater. Interfaces,
CoTe NTs	$0.5 \text{ M H}_2\text{SO}_4$		284	58.7	2016, 8, 2910-2916.
CoTe ₂ NDs/CoTe ₂ NTs	$0.5 \text{ M H}_2\text{SO}_4$	4.57	309	63.2	
CoTe ₂	0.5 M H ₂ SO ₄	0.028	580	51.0	Chem. Eur. J.
NiTe ₂	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	0.028	560	44.0	2017, 23, 11719-11726
PNC/Co	1.0 M KOH	0.35	298	131	J. Mater. Chem. A,
					2016, 4, 3204-3209
CoP/rGO	0.5 M H ₂ SO ₄	0.283	105	50	Chem. Sci.,
	1.0 M KOH		150	38	2016, 7, 1690-1695
Co ₂ P@N, P-PCN/CNTs	0.5 M H ₂ SO ₄	0.36	126	45	J. Mater. Chem. A,
	1.0 M KOH		154	52	2016, 4, 15501-15510
CoP/CC	$0.5 \text{ M H}_2\text{SO}_4$	0.92	67	51	J. Am. Chem. Soc.,
	1.0 M KOH		209	129	2014, 136, 7587-7590
Co-NRCNTs	0.5 M H ₂ SO ₄	0.28	260	69	Angew. Chem. Int. Ed.
	1.0 M KOH		370		2014, 53, 4372-4376
MoB	0.5 M H ₂ SO ₄		215	55	Angew. Chem. Int. Ed.
	1.0 M KOH		225	59	2012, 51, 12703.
Ni ₂ P/NiCoP@NCCs	0.5 M H ₂ SO ₄	0.5	120	90	J. Mater. Chem. A,
	1.0 M NaOH		116	79	2017, 5, 16568-16572.
NiP ₂ NS/CC	0.5 M H ₂ SO ₄	2.6	152	51	Nanoscale,
	1.0 M KOH		102	65	2014, 6, 13440-13445

performance electrocatalysts.

Table S3 Comparison of electrocatalytic performance of

CoTe₂@NCNTFs with other reported bifunctional electrocatalysts for

Catalyst	Electrolyte	Mass Loading	Voltage@10 mA cm ⁻² (V)	Reference
CoTe ₂ @NCNTFs	1.0 M KOH	1.0	1.67	This work
PNC/Co	1.0 M KOH	1.0	1.64	J. Mater. Chem. A, 2016, 4, 3204-3209
Co ₂ P@N, P-PCN/CNTs	1.0 M KOH	1.0	1.64	J. Mater. Chem. A, 2016, 4, 15501-15510
a-CoSe/Ti	1.0 M KOH	3.8	1.65	Chem. Commun., 2015, 51, 16683
CoSe ₂ /CF	1.0 M KOH	2.9	1.63	Nano Res., 2016, 9, 2234-2243.
Co-P/NC	1.0 M KOH		1.71	<i>Chem. Mater.</i> , 2015, 27 , 7636-7642
CoP/rGO	1.0 M KOH	0.28	1.70	<i>Chem. Sci.</i> , 2016, 7 , 1690-1695
NiCo ₂ S ₄ NA/CC	1.0 M KOH	4.0	1.68	Nanoscale, 2015, 7, 15122-15126
NiSe/Ni foam	1.0 M KOH	2.8	1.63	Angew. Chem. Int. Ed., 2015, 54, 9351-9355
Ni ₅ P ₄	1.0 M KOH	1.74	1.70	Angew. Chem. Int. Ed., 2015, 54, 12361-12365.
NiFe LDH/Ni foam	1.0 M KOH		1.70	Science, 2014, 345, 1593-1596

overall water splitting in a two-electrode cell.