Supplementary Information

Ultrahigh-flux and fouling-resistant membrane based on layered silver/MXene(Ti₃C₂T_x) nanosheets[†]

Ravi P. Pandey,^a Kashif Rasool,^a E. M Vinod,^a Brahim Aïssa,^a Yury Gogotsi,^b Khaled A. Mahmoud*^{ac}

^aQatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), P. O. Box 5825, Doha, Qatar. ^bDepartment of Materials Science and Engineering, and A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA, 19104, USA. ^cDepartment of Physics & Mathematical Engineering, Faculty of Engineering, Port Said University, 42523 Port Said, Egypt.

*Email - khaled.mahmoud@usask.ca, kmahmoud@qf.org.qa

Fig. S1 Ti 2p core level XPS spectra from (a) 7% Ag@MXene and (b) 14% Ag@MXene.

Fig. S2 XRD patterns of 28% Ag@MXene and 35% Ag@MXene membranes.

Fig. S3 EDS spectrum from 21%Ag@MXene composite membrane showing presence of Ag on MXene.

Fig. S4 (a) TGA curves for pristine $Ti_3C_2T_x$, and Ag@MXene composite membranes, (b) TGA thermograms for the estimation of bound water.

Fig. S5 RhB and MG rejection performance of $Ti_3C_2T_x$ and Ag@MXene membranes: UV-vis absorbance spectra for (a) RhB and (b) MG.

Fig. S6 Comparison of flux decline of the MXene $(Ti_3C_2T_x)$ and 21% Ag@MXene membranes for the separation of RhB, MG and BSA molecules at 25 °C.

Fig. S7 Effect of membrane thickness on separation performance of 21%Ag@MXene composite membrane. (RhB was used for separation study).

Fig. S8 Comparison of flux recovery after organic fouling in MXene $(Ti_3C_2T_x)$ and 21%Ag@MXene membranes (Feed: 300 mg/L, volume 2000 mL).

Fig. S9 Water contact angle of prepared Ag@MXene membranes: (a & b) digital image showing contact angle of a water droplet on $Ti_3C_2T_x$ and 21% Ag@MXene membranes, and (c) contact angle data with varied silver content.

Molecule	MW	Size (nm)	Rejection (%) by membranes		Membranes	
or Ion	(g mol ⁻¹)				Pore diameter (nm)	
			Ti ₃ C ₂ T _x	21%Ag@MXene	MXene	21%Ag@MXene
Na ⁺ (aq)	58.44	0.716 (diameter)	29.24	25.84	2.22	2.39
$Mg^{2+}_{(aq)}$	95.21	0.856 (diameter)	44.07	41.36	2.03	2.13
Al ³⁺ (aq)	133.34	0.950 (diameter)	53.51	49.54	1.97	2.08
RhB	479.01	1.44×1.09×0.64	81.04	79.93	1.78	1.81
MG	653.24	-	94.09	92.32	-	-
BSA	67000	-	100	100	-	-

Table S1 Solute rejection data for different ions and molecules.