Use of Surface Photovoltage Spectroscopy to Probe Energy Levels and Charge Carrier Dynamics in Transition Metal (Ni, Cu, Fe, Mn, Rh) Doped SrTiO₃ Photocatalysts for H₂ Evolution from Water

Xiaoqing Ma,^{a,b} Xiaoli Cui,^a Zeqiong Zhao, ^b Mauricio A. Melo Jr.,^b Emily J. Roberts, ^c and Frank E. Osterloh^{*b}

Electronic Supplementary Information

Figure S1. (110) XRD diffraction peaks of as-prepared SrTiO₃ and TM (Ni, Cu, Fe, Mn, Rh) doped SrTiO₃ nanoparticles.

Figure S2. XPS spectra of the SrTiO₃ nanocrystals. a) Ti energy region and b) at variable energy. To observe transition metal states, samples were doped in the presence of 6 mol% transition metal reagent. For Rh:SrTiO₃, an additional XPS spectrum for the 3 mol% doped sample is shown also.

Figure S3. SAED and HRTEM images of a single Ni-doped $SrTiO_3$ nanoparticle. The SAED diffraction pattern is that of the perovskite crystal structure viewed along the [111] zone axis. ^[1] A second, weaker set of diffraction spots indicates a small amount of a secondary lattice domain (twinning). The HRTEM shows a single set of 110 planes with spacing of 0.27 nm in the direction of the cube diagonal with no evidence for amorphous phases or twining.

Figure S4. The CPD change by surface methanol addition on each sample film at different excitation energy.

Figure S5. Time-dependent surface photovoltage spectra of Mn, Cu, and Ni-doped SrTiO₃ on FTO substrate measured under intermittent light illumination with specific monochromatic excitation energy and histogram plot of Δ CPD after each excitation.

Figure S6. Time-resolved hydrogen evolution plot for Ni (6.0%): SrTiO₃ -Pt (2wt%) under LED irradiation ($\lambda = 432$ nm) (A); TEM image of Pt loaded Ni (6.0%): SrTiO₃ photocatalyst (B).

Table S1. Atomic percentage (at %) of elements in undoped and TM doped SrTiO₃ by XRF.

Sample	Sr	Ti	TM
SrTiO ₃	51.47	48.53	0
Ni: SrTiO ₃	50.38	49.18	0.44
Cu: SrTiO ₃	49.99	48.77	1.24
Fe: SrTiO ₃	49.18	49.12	1.7
Mn: SrTiO ₃	49.83	48.44	1.73
Rh: SrTiO ₃	49.8	49.15	1.05

Dopant	Ions (radii) ^[2]	Optical E _g	Effective E _g	Color	Light
	Å	(eV)	(photoonset)		Absorption
			(eV)		feature
none	$Sr^{2+}(1.44)$	3.2	3.1	white	band edge
	Ti ⁴⁺ (0.61)				
Ni	^[3] Ni ²⁺ Ni ³⁺	3.1 + 2.4	2.75	pink	abs shoulder
	(0.69) (0.56)				+ abs peak
Cu	$^{[4]}Cu^{2+}$ Cu^+	3.1	2.7	light green	abs shoulder
	(0.73) (0.77)				
Fe	$^{[5]}\mathrm{Fe}^{2+}\mathrm{Fe}^{3+}\mathrm{Fe}^{4+}$	2.8	2.8	light	abs shoulder
	(0.61) (0.55) (0.585)			yellow	+ tail
Mn	$[6] Mn^{4+} Mn^{3+} Mn^{2+}$	2.0	2.45	yellowish	abs shoulder
	(0.53) (0.58) (0.83)			brown	+ tail
Rh	^[7] Rh ³⁺ Rh ⁴⁺	2.3	2.3	yellow	abs shoulder
	(0.67) (0.60)				+ tail

Table S2. Electronic and optical properties of doped and non-doped SrTiO₃ samples derived from SPS and UV-vis data.

CPD (V)	3.0 eV		3.5 eV	
Sample	before	after	before	after
SrTiO ₃	0.02	0.25	0.52	1.75
Ni: SrTiO ₃	0.19	0.62	0.44	1.20
Cu: SrTiO ₃	0.10	0.20	0.20	0.37
Fe: SrTiO ₃	0.04	0.10	0.14	0.32
Mn: SrTiO ₃	0.16	0.10	0.30	0.15
Rh: SrTiO ₃	0.17	0.54	0.15	0.53

Table S3. |CPD| of TM doped and undoped SrTiO₃ at 3.0 eV and at 3.5 eV before and after methanol addition.

Table S4. Visible light driven H_2 evolution rate (µmol/h) of Pt (2.0 wt%) modified metal doped and undoped SrTiO₃ catalysts from 20 vol.% aqueous methanol.

Doping molar ratio	3.0%	6.0%
Catalyst with Pt		
SrTiO ₃ ª	0.89	
Ni: SrTiO ₃ ª	0.73	1.51
Cu: SrTiO ₃ ª	0.82	1.25
Fe: SrTiO ₃ ^a	1.12	1.00
Mn: SrTiO ₃ ^a	0.81	0.73
Rh: SrTiO ₃ ^{b[7]}	5.00 (PH 3.5) at 112	
	mW cm ⁻²	

Catalyst: 0.05 g; ^a Reactant solution: 50 mL; Light source: 300 W Xe lamp with cutoff filter ($\lambda > 400$

nm); Intensity: 600 mW cm⁻². ^bReactant solution: 50 mL at pH 3.5 (adjusted with H₂SO₄); Light source: 300 W Xe lamp with cutoff filter ($\lambda > 400$ nm); Intensity: 112 mW cm⁻²

References

- 1. L. Miranda, K. Boulahya, D. C. Sinclair, M. Hernando, A. Varela, J. M. Gonzalez-Calbet and M. Parras, J. Mater. Chem., 2012, 22, 15092-15103.
- 2. W. M. Haynes, CRC handbook of chemistry and physics, CRC press, 2014.
- 3. R. Niishiro, H. Kato and A. Kudo, Phys. Chem. Chem. Phys., 2005, 7, 2241.
- 4. S. Shen, L. Zhao, Z. Zhou and L. Guo, J. Phys. Chem. C, 2008, 112, 16148-16155.
- 5. T.-H. Xie, X. Sun and J. Lin, J. Phys. Chem. C, 2008, 112, 9753-9759.
- 6. P. Moretti and F. Michel-Calendini, Phys. Rev. B, 1987, 36, 3522.
- 7. J. Wang, J. Zhao and F. E. Osterloh, Energy Environ. Sci., 2015, 8, 2970-2976.