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Perovskite ST for tandem.

O Solution process top electrode.

® Not solution process top electrode.
Perovskite ST.

o Solution process top electrode. ® 4-terminal.
a ® Not solution process top electrode. b @ 2-terminal.
O Fully solution process perovskite O Fully solution process perovskite
device, including top electrode. device, including top electrode.
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Figure S1. Recent progress for semitransparent (ST) perovskite photovoltaics (7-75), ST perovskite for tan-
dem applications (6, 715-26), as well as, silicon-perovskite tandem on its 4-terminal (6, 77, 20-23, 25-29)
and 2-terminal (716, 24, 30, 37) modality. a shows reports on single junction semitransparent perovskite-
based photovoltaics, and b shows the higher efficiency reported per study. In this review it is considered fully
solution processed only when all the elements of the device architecture, except for one of the electrodes
(e.g. ITO bottom electrode), are processed from solution to deliver the claimed efficiency. This definition is
extended to antireflective coatings, electrodes, selective contacts and buffer layers. Unless stated otherwise,
for ¢ only perovskite-based tandem architectures coupled with silicon technologies are considered. * On the
data point corresponding to [15] on the panel a, the reported semitransparent architecture utilizes a low-
bandgap mixed tin-lead iodide perovskite absorber not suitable for Si-based multijunction applications.
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Figure S2. Total transmittance and reflectance spectra of AQNW layers with various sheet resistance depos-
ited on glass, a. Average total transmittance and average total reflectance (300 nm to 1100 nm) as a function
of sheet resistance (R,) of the AgQNW film deposited on glass, b. Total transmittance vs sheet resistance for
AgNW layers on top of ZnO and on bare glass. In order to accurately measure the sheet resistance, for each
AgNW layer thickness we deposited a control layer on top of ZnO to represent the relevant surface. Optical
characterization was extracted from the fims deposited on glass in order to disregard any optical effects
from the ZnO, c.



Table S1. Key metrics for devices using AgNW top electrode with different sheet resistance.

Illumination AgNW sheet EQE/Sol. Sim. PCE (%)b Voc (V) FF Sseries
conditions” resistance T (A ) Q@ en)
G-illuminated 120 qu’IAgNW 7.59/8.56 3.0/3.3 0.93 0.42 715
W-illuminated 8.63/9.62 3.4/3.7 0.93 0.42

31 .qu’IAgNW 11.56/12.52 6.4/6.6 0.95 0.55 361
11.43/12.44 6.0/6.5 0.94 0.55

16 Q"]AgNW 12.25/13.15 6.8/7.1 0.95 0.57 229
11.54/12.53 6.2/6.8 0.95 0.57

10 .qu’IAgNW 13.09/14.02 8.5/8.6 0.94 0.65 110
11.63/12.64 7.1/7.7 0.94 0.65

8 QAvq’IAgNW 13.35/14.25 8.3/8.9 0.93 0.67 89
12.27/13.28 7.6/8.3 0.93 0.67

6 QAvq’]AgNW 14.23/15.29 9.3/10.0 0.95 0.69 88
11.35/12.64 7.4/8.3 0.94 0.69

5 QAvq’IAgNW 15.49/16.52 10.8/11.6 1.00 0.70 71
11.60/12.61 8.1/8.8 1.00 0.70

2 QAvq’]AgNW 16.41/17.46 11.5/12.3 0.99 0.72 78
7.63/8.64 5.3/6.0 0.98 0.72

Ag evap. 16.65/17.64 12.1/12.8 0.97 0.75 19

* W-illuminated, illuminated from the AgNW electrode. G-illuminated; illuminated from the glass substrate.

® PCE values are calculated using short circuit photocurrent extracted from EQE characterization, and from the short circuit pho-
tocurrent extracted from J- characterization AM 1.5 irradiation at 0.1 W/cm? illumination. * The values presented are averaged
over a total of 12 cells per experimental variation.

Characterization of the electrode; bulk and percolative regimes

The bulk regime corresponding to the area with low sheet resistance can be expressed as:

-2
Tiotar = [1 + ﬁaa_]p] , (eq. S1)

2Rs opc

where Zy = 373.76 ohms, is the impedance of free space; oop is the optical conductivity;
and opc is the direct current conductivity. Accordingly, bulk-like behavior on nanostructured

transparent conductors can be characterized by oop/opc as the figure of merit (FOM). Further-



more, by adapting the reminiscent model for describing electrical percolation, Coleman at al.
derived a model that closely describes the relation between transmittance and sheet resistance in

the percolative regime. The model is as follows:

2 -2

> H = 2 [—GDC/UOP ]

Zotminoop)™

Z )1/(n+1) B

1
Tiotar = |1+ H(Z_RS

(eq. S2)

where I is the percolative FOM, n is the percolation number, and #,;, is the necessary
thickness to reach the bulk conductivity value opc. A detailed mathematical and theoretical de-
scription of the derivation of bulk-like regime and percolation regime can be found else-

where(32—34)
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Figure S3. External quantum efficiency spectrogram analysis for devices with different illumination conditions
on semitransparent devices.
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Figure S4. Total reflectance, total transmittance and absorption measurements of utilized selective contacts,
a. In b, the upper panel shows the sun reference solar spectral irradiance AM1.5G 1 (ASTM G173-03), while
the lower panel shows the power density spectra which is loss due to parasitic absorption. The power loss
accounts for the simulated optical interference along with absorption contribution of the parasitic absorption.
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Figure S5. Optical properties comparison between the two different substrates; Quartz-ITO and Glass-ITO,
a and b, respectively. Reflection and transmission spectra were corrected by the I[TO/Air interface. ¢ and d
shows that the photovoltaic performance is not compromised whit the utilization of the quartz substrate.



a b
‘/}‘\ 25 E Hysteresis CuSCN-opaque B 20 } }
& E Measurement order: 1 18+ 1
o £ — ER

15 £ 1stforward, 3
E F 2M reverse. E g 16+ i
> 5= T 5 14t 1
g .k | il | R P 1
@ E E S
Q g ] G 10} i
S 15 £ + T Size: 12
) E E & : 1
S : El 8 Time: 3600 hours
8 05 ‘EHHHH\}HHHH\HH\HH}\HHHH}H\E 6 4 I

-1.0 -0.5 0.0 0.5 1.0 10 100
Voltage (V) Time (Days)

Figure S6. Hysteresis measurements of CuSCN-based opaque champion cell where the forward and con-
secutive reverse scan were extracted in same cycle, a. Efficiencies extracted from J-V characterization over
a time lapse of 150 days while being stored in nitrogen atmosphere in the dark, b. Note that the efficiency of
this devices performed within the error margin cited in the main text but do not reflect champion devices.
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Figure S7. Optical constants for ITO, CH;NH4Pbl;, along with three different hole transporting materials
commonly used in the literature and CuSCN, a and b. Transmittance and reflection profiles of PEDOT:PSS-
based vs CuSCN-based full semitransparent devices showing that the difference on the transmittance pro-
files is not only due to reflection, ¢. Analogous PTAA vs CuSCN-based semitransparent devices showing that
the difference on the reflection closely matches the difference in the transmittance, d.
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Figure S8. Simulated device average red transmittance (AVT; 800 nm to 1100 nm) for full perovskite semi-
transparent cell stacks comprising various hole transporting layers (HTL). The thickness of the HTL layers is
set constant at values reported from the literature while the thickness of the perovskite layer is varied, a.
Same simulation with equally thick HTL, b. Corresponding simulated average reflectance (AVT; 800 nm to
1100 nm), c.
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Figure S9. Total transmittance and reflectance for full device, including the electrode for the CuSCN-based
semitransparent cell and the PEDOT:PSS- based semitransparent cell, a and b, respectively.
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Figure S10. AgNW average total transmittance measurements corrected by contribution of underlying glass,

a, and total transmittance spectra, b.
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Figure S11. Representative photocurrent density-voltage curves under AM 1.5 irradiation at 0.1 Wem™ illu-
mination, a and ¢. External quantum efficiency (EQE) spectrograms for PEDOT:PSS-based semitransparent
perovskite along with silicon-bare cell and silicon-filtered by a semitransparent cell (including the electrode),
PERL-based and IBC-based layouts b and d, respectively.



Q

11 T g
g PEDOT:PSS cell - opaque?
= L 5’14.2 h
E  ——— ] o
& 1.0 P e’ ot ak m
Ly i ] S
O C E
Q. F 1
0.9 1 | +12.2
0 40 80 120
Time (s)
b 1.1
' CuSCN cell - opaque 1195

PCE (norm.)
o
(%) 30d

0.9 T Y R 16.5
0 40 80 120
Time (s)
c CuSCN cell - semitransparent
~ 20+ 14
< 1.2
& : S
S 16 n=17.1% 1 =
e 14+ ] °
S f . z =
g V=Vypr @t =0;0.904V | g
S 12*5 ]
a g ]
10 oo 10,6
0 200 400 600 800 1000

Time (s)

Figure S12. Mpp tracking response over time of both PEDOT:PSS and CuSCN-based opaque representa-
tive devices, a and b, respectively. Note that the device efficiency displayed on a and b performed within the
error margin cited in the main text but do not reflect champion devices. ¢, Photovoltaic response of the
semitransparent CuSCN-based device over time. After an initial IV measurement the cell was held at the ini-
tial Vi, for the rest of the test. Measurements were performed with the solar cell mechanically stacked on
top of a silicon cell and under a solar simulator emitting an AM 1.5G spectrum at 0.1 Wem?. Mpp tracking
was performed with a Keithley 2400 source measure unit. After taking an initial full JV curve, the cell was held
at the calculated V/,,,,. Every second, a small voltage sweep with 5 data points in the range of V,,,, + 20mV
was recorded. The power output at each point was calculated and interpolated with a spline to find the pre-
cise new maximum power point. To avoid oscillations of the tracking algorithm, the bias voltage was not di-
rectly set to the new V,,,,, but a damping factor d was introduced so that Vi = Vi (previous) + d*[V,,,
(current) — V., (previous)]. The current was recorded continuously in between each tracking interval sam-

pling 50 entries per second.
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Figure S13. Effect of MgF, thermally evaporated on perovskite-based semitransparent solar cell (rear side of
quartz substrate) on perovskite-tandem 4 terminal imputed efficiency. External quantum efficiency (EQE)
spectrograms for semitransparent perovskite along with silicon-bare cell and silicon-filtered by a semitrans-
parent cell (including the electrode).

Accelerated lifetime assessment of AgNW electrodes

Motivation: studying the optoelectronic performance of AgNW films under accelerated lifetime
testing conditions.
Procedure: AgNW films doctor bladed on glass were kept a) under ~1 sun (metal halide lamp),

b) in the dark under damp heat (85 °C/85%RH), c) in the dark (shelf test). All samples were kept

in ambient air. Three samples per environment were probed periodically using UV/VIS absorp-

tion spectroscopy and 4-point probe.
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Figure S15. UV-Vis temporal behavior and average transmittance under: ~1 sun illumination (metal halide
lamp) in air ¢ and f; damp heat (85 °C and 85% RH) b and e; and shelf-dark conditions in air a and b.
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