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Table S1. Literature survey of long-term stability tests of ceria based redox materials 

System  Results Ref. 

 Powder and porous 

ceria (graphene used 

for sacrificial pore 

formation); CO2 

splitting; 1450 /1100 
oC temperature swings, 

2000 cycles 

a) Maximum value of non-stoichiometry (δ) of ceria powder was 0.0383 at 1450 
oC and  

b) Initial fuel production of 86.4 % retained over 2000 cycles and average value 

of δ was 0.0197. 

 

1 

CeO2 (isothermal 

cycling at 1750 K; 45 

cycles) 

a) During isothermal cycling, 360 mL min−1 of CO produced continuously over 45 

redox cycles, and up to 95% of the sensible heat of the process gases recovered. 

2 

Dual scale porous (mm 

and μm sized pores) 

reticulated ceria 

structure; CO2 

splitting; 1500 oC/ 750 
oC temperature swings 

(500 cycles). 

a) CO2 splitting with 100% selectivity, 83% molar conversion, and 5.25% solar-to-

fuel energy efficiency.  

b) Dual-scale porosity of ceria structure and lower energy penalty of vacuum 

pumping as compared to that of inert gas recycling for maintaining a low pO2 value 

during the reduction improved the efficiency significantly (stable for 500 

consecutive cycles). 

3 

Ceria fiberboard (8-μm 

diameter and over 

200 μm in length) and 

Rh deposited CeO2 

fibers (1512 oC/ 803 oC 

temp. swing cycles for 

H2O splitting). 

a) The fuel production process transitions from one controlled by surface reaction 

kinetics at re-oxidation temperatures below ~1000 oC to one controlled by the rate 

at which the reactant gas is supplied at temperatures above ~1100 oC.  

b) Application of Rh catalyst particles improves the oxidation rate at low 

temperatures, but provides no benefit at high temperatures for either oxidation or 

reduction. 

4 

Three types of Ceria 

nano-structures; flame-

made and flower-like 

agglomerates and sol–

gel sub-micro particles. 

(Isothermal cycling at 

1173 K for 10 cycles). 

a) Flame-made agglomerates maintained 57 % higher average CO production rates 

compared to commercial ceria and sol-gel ceria.  

b) Reported H2 (480 μmol min-1 g-1) and CO (230 and 340 μmol min-1 g-1) 

production rates and redox capacity (Δδ = 0.25) for ceria. 

Note: methane used as reducing agent 

5 

Scalable CeO2 fibers 

(μm size range), 1000 

isothermal cycles 

followed by 16 swing 

cycles between 

1773K/1073K. 

a) Change in non-stoichiometry (Δδ) is 0.04.  

b) Surface area lost 29% (0.057 m2g-1) but retained an open, porous microstructure.  

c) Proposed that it is beneficial to eliminate the high temperature calcination during 

manufacture to preserve surface area and then cycle at a lower reduction 

temperature. 

6 

Ceria reticulated foam 

structures with dual-

scale porosities (mm 

and μm sized pores); 

CO2 splitting; 1773 K / 

873-1273 K, 20 cycles 

a) CO production rates reported are ten times higher for samples with strut 

porosity than for samples with non-porous struts. 

b) Shorter cycle time and a mean solar-to-fuel energy conversion efficiency of 

1.72%. 

 
 

7 
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Table S1 (continued). Literature survey of long-term stability tests of ceria based redox materials 
 

System  Results Ref. 

1% Rh-CeO2 co-

precipitation synthesis 

(1500/500 oC 

temperature swings, 59 

cycles) 

a) Direct methane production from CO2 and H2O;    

b) Catalytic effect of metallic rhodium particles in improving the methane and CO 

productivities;  

c) Slight increase in methane signal between with cycle number.  

d) After 59 cycles the productivities are at about 75% of their initial values 

(1400/500 oC).                

8 

 Ce0.85‑yZr0.15REyO2−0.5y 

(RE = Y, 

La, Sm and Gd); 80 

cycles 

Ce0.82Zr0.15Sm0.03O1.99 maintains stable yields and improved oxidation kinetics 

compared to Ce0.85Zr0.15O2. 

Structural vacancies formed due to Sm3+ doping enhances oxygen bulk transport, 

while performances are lower than for non-RE doped ceria-zirconia. 

9 

CexZryHfzO2 (co-ppt. 

synthesis), CO2 

splitting (1400 oC/ 

1000 oC, 20 cycles) 

Ce0.895 Zr0.046 Hf0.053 O1.988 (CZH5) produced stable and steady amounts of O2 (114 

μmol/g) and CO (162 μmol/g) in 20 thermochemical cycles. 

10 

Ce1-xZrxO2 electrospun 

fibers (0<x<0.1) ; 1400 

/800 oC temperature 

swings; 108 cycles 

Sintering resistant material with sintering only occurring along the fiber axes, 

overall CO production and peak production rate stabilize above 3.0 mL g -1 and 

13.0 mL min-1 g -1, respectively. 

11 

 Ce1-xZrxO2 (0<x<0.4) 

synthesized using 

citrate nitrate auto 

combustion route; 

1400/900 oC; 100 

cycles 

Optimal zirconium content (x = 0.15) Ce0.85Zr0.15O2, improved the specific CO2-

splitting performance by 50% compared to pure ceria. Declining splitting kinetics 

were observed over 100 cycles for optimal zirconium composition. 

12 
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Figure S1. Overview of five TGA cycles with the co-doped ceria samples M0.05Hf0.05Ce0.9O2 (M = Li, 

Ca, Mg, Er, and Y) vs. Hf0.05Ce0.95O2 as a reference. 

 

 

 Figure S2. 50 cycle TGA experiment of pristine ceria.   
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Table S2. Dopant concentration [mol %] determined from EDX spectra. 

Label 10Hf before 

TGA 

10Hf after 

TGA 

10Zr before 

TGA 

10Zr after 

TGA 

7Ta before 

TGA 

7Ta after 

TGA 

5Nb before 

TGA 

5Nb after 

TGA 

1 9.58 9.12 10.10 11.50 6.41 7.28 3.45 5.33 

2 8.65 8.74 10.82 10.06 6.89 8.50 3.07 5.57 

3 9.02 8.58 10.45 10.00 6.87 7.72 5.05 5.18 

4 8.98 8.44 9.78 11.45 6.46 7.28 5.49 4.97 

5 9.27 9.04 11.21 11.45 6.27 7.43 4.21 5.00 

6 7.81 8.78 10.74 9.76 9.79 7.66 3.88 5.00 

7 8.91 8.88 10.37 11.04 6.15 7.17 4.29 5.27 

8 9.52 8.99 9.60 10.20 6.55 8.36 4.24 5.70 

9 9.45 8.44 9.67 10.90 6.20 9.44 4.48 4.90 

10 9.48 8.59 8.87 9.46 6.80 8.22 4.94 5.31 

Average 9.067 8.760 10.161 10.582 6.839 7.906 4.310 5.223 

Standard 

deviation 
0.539 0.245 0.697 0.771 1.071 0.719 0.733 0.266 

 

 

 

  

Figure S3. Peak shift in the region around 28 ° of PXRD patterns before (a) and after (b) 50 TGA cycles 

for ceria, 10Hf, 10Zr, 7Ta, and 5Nb. 
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Figure S4. SEM/EDX mapping before (left) and after 50 TGA cycles (right) of 10Zr (a, b), 10Hf (c, d), 

7Ta (e, f), and 5Nb (g, h). 
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Table S3. Dopant concentration in mol% determined from EDX spectra before TGA cycling 

experiments (grey) and after TGA cycling experiments (white). 

 

No of 

measu-

rement 

D
o

p
an

t 
1 2 3 4 5 6 7 8 9 10 x-10 

Sample 

(and 

label) 

 

L
i 0

.0
5
H

f 0
.0

5
C

e 0
.9
O

2
 

(5
L

i5
H

f)
 

Li 0 0 0 0 0 0 0 0 0 0 0 

Hf 3.8 3.9 3.0 4.1 5.5 3.0 3.0 3.6 4.0 3.6 3.7 ± 0.7 

Li   -   -   -   -   -   -   -   -   -   -   - 

Hf   -   -   -   -   -   -   -   -   -   -   - 

C
a 0

.0
5
H

f 0
.0

5
C

e 0
.9
O

2
 

(5
C

a5
H

f)
 

Ca 5.0 4.9 5.4 5.4 4.9 5.3 5.5 5.2 5.0 5.6 5.2 ± 0.3 

Hf 3.8 3.7 3.3 3.3 4.0 3.9 3.0 3.6 2.8 3.9 3.5 ± 0.4 

Ca 6.2 5.5 5.6 6.1 6.1 6.0 6.0 5.5 5.5 6.1 5.9 ± 0.3 

Hf 4.7 3.7 4.7 3.1 4.5 3.5 4.2 4.1 3.5 4.6 4.1 ± 0.6 

M
g

0
.0

5
H

f 0
.0

5
C

e 0
.9
O

2
 

(5
M

g
5
H

f)
 

Mg 5.0 3.9 5.5 4.4 5.8 5.7 3.8 4.0 6.1 4.5 4.9 ± 0.9 

Hf 3.7 3.5 2.9 3.6 3.0 3.6 3.9 3.9 3.6 3.2 3.5 ± 0.3 

Mg 12.5 9.7 9.5 10.1 11.5 11.7 12.9 10.1 9.5 9.1 10.7 ± 1.4 

Hf 3.5 2.8 3.0 2.9 3.3 3.1 3.3 3.1 3.3 3.2 3.1 ± 0.2 

Y
0
.0

5
H

f 0
.0

5
C

e 0
.9
O

2
 

(5
Y

5
H

f)
 

Y 4.8 5.0 4.8 4.9 4.2 4.6 4.9 5.4 5.7 6.0 5.0 ± 0.5 

Hf 4.2 4.0 4.3 3.2 4.1 3.5 4.1 4.1 4.0 4.3 4.0 ± 0.3 

Y 4.1 5.1 4.7 4.8 4.6 5.5 4.6 6.4 5.6 5.6 5.1 ± 0.7 

Hf 3.4 3.2 2.8 3.1 2.9 4.3 5.1 3.5 2.4 4.0 3.5 ± 0.8 

E
r 0

.0
5
H

f 0
.0

5
C

e 0
.9
O

2
 

(5
E

r5
H

f)
 

Er 4.9 3.7 3.9 4.2 4.2 4.5 4.4 4.5 4.4 4.8 4.3 ± 0.4 

Hf 2.9 4.2 3.6 3.3 3.3 3.5 3.9 3.7 2.8 3.8 3.5 ± 0.4 

Er 4.0 4.3 3.8 4.0 4.6 3.7 4.1 6.0 4.4 4.5 4.3 ± 0.6 

Hf 3.9 3.9 3.7 2.8 2.1 2.9 3.0 2.3 3.6 3.3 3.1 ± 0.6 
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Figure S5. PXRD patterns of M0.05Hf0.05Ce0.902 (M = Li, Mg, Ca, Er, and Y) before and after TGA in 

the region between 28° and 29.5°. 
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