Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Convenient synthesis and engineering of ultrafine Co₃O₄-incorporated carbon composite: towards practical application of environmental remediation

Rui Luo, Chao Liu, Jiansheng Li*, Chaohai Wang, Xiuyun Sun, Jinyou Shen, Weiqing Han, Lianjun Wang*

Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse School of Environment and Biological Engineering Nanjing University of Science and Technology, Nanjing 210094, China. Tel: +(86) 025-84315351 *E-mail: lijsh@mail.njust.edu.cn; wanglj@mail.njust.edu.cn.

Electronic Supplementary Material

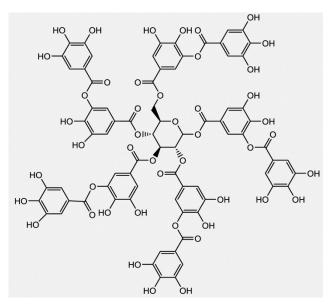


Fig. S1 The chemical structure of TA

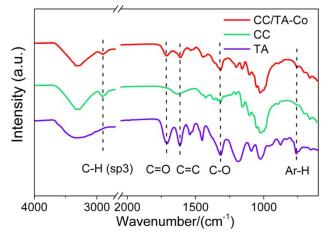


Fig. S2 The FT-IR spectra of TA, CC and CC/TA-Co.

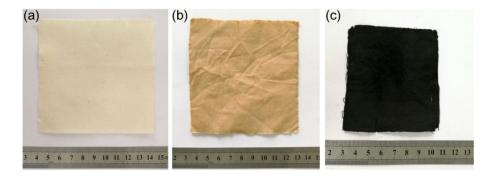


Fig. S3 The pictures of (a) CC, (b) CC/TA-Co and (c) Co_3O_4/CC

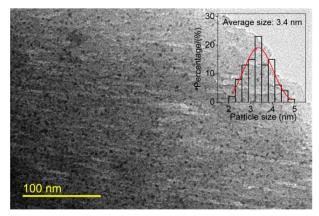


Fig. S4 The TEM image and size distribution profile of Co/CC $\,$

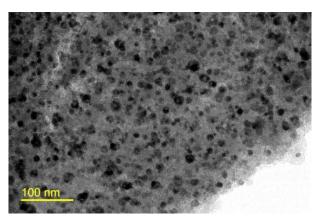


Fig. S5 The TEM image of Co₃O₄-C

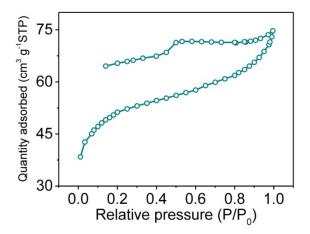


Fig. S6 N_2 adsorption-desorption isotherms of Co_3O_4/CC .

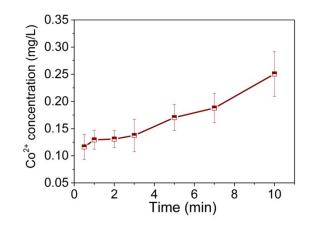


Fig. S7 The Co²⁺ leaching of Co₃O₄/CC in the degradation process

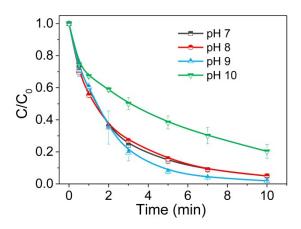


Fig. S8 The effect of initial solution pH on BPA removal efficiency

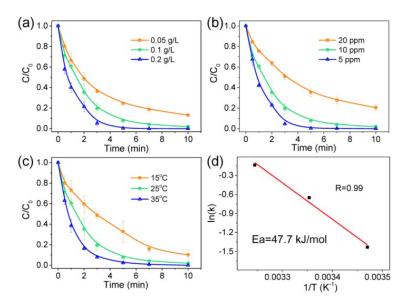


Fig. S9 Efforts of (a) PMS dose, (d) BPA concentration and (c) reaction temperature on BPA removal efficiency. Reaction conditions: [BPA] = 10 mg/L (for a, c), [PMS] = 0.1 g/L (for b, c), catalyst = 0.1 g/L, initial pH = 9.0, T = 298 K (for a, b), (d) the estimation of activation energy.

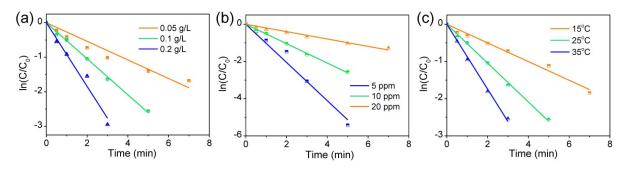


Fig. S10. Efforts of (a) PMS dose, (d) BPA concentration and (c) reaction temperature on BPA removal efficiency.

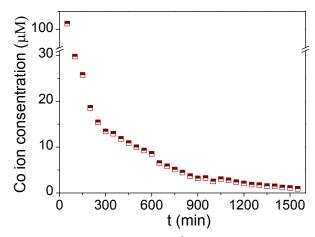


Fig. S11 The change of concentration of Co²⁺ varying with BPA solution volume

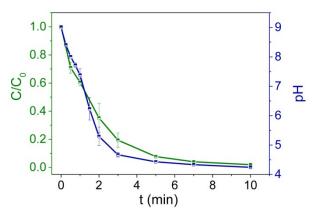


Fig. S12 The relationship between the removal efficiency of BPA and pH of solution.

Compound	Molecular weight (m/z)	Tentative structure
Monohydroxylated BPA (MHBPA)	244	но-СН ₃ -Он
Quinone of monohydroxylated BPA	242	
2-Hydroxy-4-(2-(3-hydroxy-4- oxocyclohexa-2,5-dienyl)propan-2- yl)cyclohexa-2,5-dienone [or quinone of dihydroxylated BPA] or Quinone of dihydroxylated BPA	256	$O = \underbrace{CH_3}_{CH_3} \underbrace{OH}_{OH}$ $O I$ $O = \underbrace{CH_3}_{H_0} \underbrace{OH}_{OH}$ $O = \underbrace{OH}_{OH}$
Biphenyldiol	186	но-Он

Table S1 The main aromatic intermediates from BPA degradation