Electronic Supplementary Information

Imidazolate-Mediated Assembled Structures of Co-LDH Sheets for Efficient Electrocatalytic Oxygen Evolution

Liyong Chen,*^{,†} Yuting Guo,[†] Huifang Wang,[†] Zhizhi Gu,[†] Yingyue Zhang,[†] Xuezhao Li,[†] Hong Wang,^{*,‡} and Chunying Duan^{*,†}

[†]State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong RD., Dalian, 116024,

[‡]China Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China

E-mail: lychen@dlut.edu.cn; cyduan@dlut.edu.cn; ias_hwang@njtech.edu.cn

Experimental Section

Materials and characterization methods

All chemical reagents were used as received. Nafion solution (5 *wt*% in mixture of water and 2-propanol) was purchased from Sigma Aldrich, and other chemicals and solvents, including cobalt nitrate ($Co(NO_3)_2 \cdot 6H_2O$), imidazole, 2-methylimidazole (Hmim), 2ethylimidazole, benzimidazole, sodium hydroxide (NaOH), potassium hydroxide (KOH), methanol, ethanol, *n*-propanol and ethylene glycol, were purchased from Sinopharm Chemical Reagent Co., Ltd, China.

Transmission electron microscopy (TEM) was performed for microstructural and morphological investigation with a Tecnai F30 operated at 300 kV. Scanning electron microscopy (SEM) was performed for structural and morphological investigation on HITACHI UHR FE-SEM SU8220. X-ray diffraction (XRD) was carried out in a Rigaku D/Max 2400 automatic powder X-ray diffractometer with Cu-Ka radiation ($\lambda = 1.5418$ Å). Atomic force microscopy (AFM) was used to measure the thickness of sheets on Park Systems XE-70 with non-contact mode. The content of cobalt was evaluated by inductively coupled plasma atomic emission spectroscopy (ICP-AES) on Optima 2000DV. X-ray photoelectron spectroscopy (XPS) was used to analyze surface elemental composition and chemical state of samples on Thermo ESCALAB 250Xi with Al- Ka radiation (hv = 1486.6 eV). Linear-sweep voltammetry (LSV), cyclic voltammetry (CV), and chronoamperometry were measured on a CHI760E electrochemical workstation with a typical three-electrode cell.

Materials synthesis

Preparation of ZIF-67 rhombic dodecahedra (RDs). In a typical synthetic procedure, $Co(NO_3)_2$ (0.6 mmol) and Hmim (1.2 mmol) were dispersed into methanol (7.5 mL), respectively; subsequently, $Co(NO_3)_2$ solution was slowly poured into Hmim solution with vigorously stirring. The resulting mixture in 20 mL of vial was kept at room temperature for 24 h without turbulence. The final dark violet product was rinsed twice by methanol, and dried in vacuum at 100 °C for 12 h before further characterization.

In the preparation procedure, ethanol was used to replace methanol to test solvent effect on production of ZIF-67 while other conditions were kept unchanged.

Preparation of porous Co-LDHs (referred to Co-LDH-1). Co(NO₃)₂ (0.6 mmol) and Hmim (1.2 mmol) were sequentially added into a 20 mL of Teflon-lined stainless steel autoclave containing 15 mL of methanol with stirring, and subsequently heated at 100 °C for 4 h. The yellowish brown powder was rinsed twice by methanol, and dried in vacuum at 100 °C for 12 h before further characterization.

The synthetic experiments were performed while substituting methanol with ethanol, *n*-propanol, ethylene glycol, and water, respectively. It is noted that the reaction temperature was increased to 120 °C if ethylene glycol was used as solvent. In the synthetic experiments, imidazole, 2-ethylimidazole, and benzimidazole were also used to substitute for Hmim under otherwise identical conditions when methanol was served as the reaction medium.

Preparation of ZIF-67 RDs by transformation of Co-LDHs-1. The as-synthesized porous Co-LDHs (mole of cobalt = 0.6 mmol, calculation according to ICP-AES) were dispersed in methanol (15 mL) containing Hmim (1.2 mmol), and kept at room temperature for 10 d with gently stirring. The dark violet powder obtained was rinsed twice by methanol, and dried in vacuum at 100 °C for 12 h before further characterization.

Non-purified Co-LDHs-1 was directly applied to the transformation experiment to prepared ZIF-67 RDs by the same procedure. In detail, Hmim (1.2 mmol) was introduced to the synthetic system of Co-LDHs-1 (15 mL); subsequently, the mixture was kept at room temperature for 10 d with gently stirring. Note the mole of Co^{2+} was evaluated based on the amount of $Co(NO_3)_2$ added in the preparation process of Co-LDHs-1.

Preparation of cage-like Co-LDH (referred to Co-LDH-2) by transformation of ZIF-67. The as-synthesized ZIF-67 RDs (0.6 mmol) were dispersed in methanol (15 mL), and then heated at 100 °C for 4 d by a solvothermal process. The final yellowish brown powder was rinsed twice by ethanol, and dried in vacuum at 100 °C for 12 h before further characterization.

Alternatively, non-purified ZIF-67 RDs were directly used to prepare Cage-like Co-LDHs via solvothermal treatment at 100 °C for 4 d.

Preparation of ZIF-67 RDs by a cycling transformation route. The non-purified ZIF-67 RDs in the synthetic system (15 mL) were directly heated at 100 °C for 4 d through a solvothermal process. Afterwards, the yellowish brown intermediate of Co-LDHs was incubated at room temperature for 10 d with gently stirring after introducing Hmim (1.2 mmol). Finally, the dark violet powder obtained was washed twice by methanol, and dried in vacuum at 100 °C for 12 h before further characterization.

Preparation of cage-like Co-LDHs by a cycling transformation route. The non-purified porous Co-LDHs in the synthetic system (15 mL) were directly incubated at room temperature for 10 d with gently stirring after introducing Hmim (1.2 mmol). Subsequently, the dark violet intermediate of ZIF-67 was heated at 100 °C for 4 d through a solvothermal process. Finally, the yellowish brown powder obtained was washed twice by methanol, and dried in vacuum at 100 °C for 12 h before further characterization.

Preparation of dispersive Co-LDH (referred to d-Co-LDH) sheets. The as-synthesized Co-LDHs (50 mg) were dispersed into formamide (50 mL), and the mixture was sonicated for 30 min using a probe sonicator (JY92-IIN Ultrasonic Homogenizer, 650 W, 30%) and then stirred for 8 h. The final samples were separated by centrifugation at 3000 rpm to discard the solid, and subsequently the supernatant was collected by centrifugation at 13300 rpm. The resulting *d*-Co-LDH sheets were subjected to characterization after being washed with methanol. Note that both *d*-Co-LDH samples were defined as *d*-Co-LDHs-1 and *d*-Co-LDHs-2, which were derived from Co-LDHs-1 and -2, respectively.

Electrochemical measurements

Preparation of electrocatalyst inks: Electrocatalysts (5 mg) were dispersed into the mixture of water and 2-propanol with volume ratio of 1:1 (0.975 mL), and then Nafion solution (0.025

mL, 5 *wt%*) was added. The final mixture was sonicated in an ultrasonic bath for 20 min to form a well-dispersed suspension.

Preparation of work electrodes: Prior to utilization, glassy carbon (GC) electrodes (3 mm in diameter) were firstly polished with alumina suspension in deionized water on a Nylon plate; subsequently, the polished GC electrodes were rinsed with deionized water. Carbon fiber papers (CFPs) were sequentially treated by sonication in HNO₃, H₂O, ethanol and acetone for 30 min, respectively. Afterwards, a tape was used to define an area of 0.09 cm². The resultant electrocatalyst ink (5 μ L) was drop-casted on the surface of a glassy carbon electrode or a CFP electrode. All electrodes prepared were dried at room temperature in air for 1 h. The GC/CFP electrodes loading electrocatalysts were used as the working electrode. Hg/HgO (1 M KOH) and polished Pt wire were used as the reference electrode and the counter electrode in a three-electron cell, respectively.

Electrochemical measurement: LSV tests were performed in 1 M KOH solution at a sweep rate of 5 mV s⁻¹ with a potential window of 0 to 0.8 V vs Hg/HgO after 5 CV scans between 0 V and 0.6 V. CV tests were carried out in 1 M KOH solution at variable sweep rate from 20 to 120 mV s⁻¹ with an increment of 20 mV s⁻¹ with a potential window of 0.3 to 0.4 V vs Hg/HgO to measure the double-layer capacitance of electrocatalysts. Cycling stability of electrocatalysts was evaluated by successively scanning CV 3000 times with a potential window of 0.3 to 0.6 V vs Hg/HgO at a sweep rate of 10 mV s⁻¹. EIS was collected in 1 M KOH solution at overpotential of 395 mV in the frequency range from 0.1 Hz to 100 kHz with oscillation potential amplitudes of 5 mV. The aforementioned electrochemical tests were used GC electrodes as the work electrode in a three-electrode cell. Long-term stability for electrocatalysts on CFP electrodes was further investigated by chronoamperometry tests for 8 h after 5 CV scans between 0 V and 0.6 V vs Hg/HgO in 1 M KOH solution. During the measuring process, the overpotentials were fixed at 300 mV for *d*-Co-LDHs-1 and -2 and 330 mV for Co-LDHs-1 and -2.

The Tafel plots were calculated by LSV curves based on an equation of $\eta = a + blgj$. The potentials *vs* reversible hydrogen electrode (RHE) were obtained by converting the measured potentials *vs* Hg/HgO using the Nernst equation of $E_{RHE} = E_{Hg/HgO} + 0.0591pH + 0.098$

Catalyst	Preparation Method	Electrolyte	Onset Potential [V]	Current Density [mA cm ⁻²]	∏(at corresponding current density) [V]	Tafel Slope [mV dec ⁻¹]	Ref
Co-LDH	Solvothermal	1M KOH	~1.47	10	0.312/0.319/0.32 1	68.4/77.7/ 77.9	This work
<i>m</i> -CO-LDH	Solvothermal	1M KOH	~1.45	10	0.288/0.289/0.29	55.1/57.0/ 60.9	This work
Exfoliated CoFe-LDH	Hydrothermal	1M KOH	1.457	10	0.266	37.85	1
Exfoliated CoCo(NiCo/NiF e)-LDH	Topochemical approach	1M KOH	_	10	0.35(0.33/0.3)	45(41/40)	2
NiCo-LDH/NF	Solvothermal	1M KOH	1.7	10	0.271	72	3
NiCo-I DH	Solvothermal	0 1M KOH	1.52	10	0.42	113	4
	Hydrothermal	0.11111011	1.02	10	0.12	110	
Exfoliated NiCo- LDH	continuous-	1M KOH	—	10	0.367	40	5
NiCoFe-LDH	Hydrothermal	1M KOH	1.46	80	0.257	53	6
CoMn-LDH	Co- precipitation	1M KOH	_	10	0.324	43	7
NiCo-LDH/N-G	Hydrothermal Microwave-	0.1M KOH	1.58		—	614	8
ZnCo-LDH	assisted	0.1M KOH	1.46	2	0.375	101	9
ZnCo-LDH	Electrodepositi on	0.1M KOH	1.56	2	0.427	83	10
ZnCo-LDH/G	Co- precipitation	0.1M KOH	1.56	10	0.43	73	11
CoFe-LDH-F	Hydrothermal	1M KOH	_	10	0.3	40	12
NiFe-LDH-rGO	Topochemical oxidation	1M KOH	_	10	0.21	40	13
3DGN/CoAl- LDH	Hydrothermal	1M KOH	_	10	0.252	36	14
Exfoliated CoFe-LDH	Hydrothermal	1M KOH	_	10	0.232	36	15

Table S1. Comparison of the electrocatalytic activity of cobalt-based LDHs towards OER.

Fig. S1. The optical images of ZIF-67 prepared by (a) mixing $Co(NO_3)_2$ and Hmim in methanol at room temperature, (b) transformation of Co-LDHs-1 and (c) cycling transformation from non-purified ZIF-67 to Co-LDHs to ZIF-67.

Fig. S2. TEM images and SEM images of (a, b) ZIF-67 RDs and (c, d) Co-LDHs-1 by mixing $Co(NO_3)_2$ and Hmim in methanol at room temperature for 24 h and at 100 °C for 4 h, respectively; (e) the corresponding XRD patterns; (f) AFM image of Co-LDH sheets that were prepared by suctioning the supernatant after sonication of Co-LDH-1 in ethanol with an ultrasonic bath for 30 min and centrifugation at 3000 rpm.

Fig. S3. The optical images of Co-LDHs prepared by (a) solvothermal treatment of $Co(NO_3)_2$ and Hmim in methanol, (b) transformation of ZIF-67 and (c) cycling transformation from non-purified Co-LDHs to ZIF-67 to Co-LDHs.

Fig. S4. N_2 physisorption isotherm of Co-LDHs-1 at 77 K.

Fig. S5. (a) TEM image, (b) SEM image and (c) XRD pattern of Co-LDHs by solvothermal treatment of methanolic solution of $Co(NO_3)_2$ and 2-ethylimidazole at 100 °C for 4 h.

Fig. S6. TEM images (left) and SEM images (right) of Co-LDHs prepared in (a, b) ethanol, (c, d) ethylene glycol and (e, f) *n*-propanol and ZIF-67 prepared in (g, h) ethanol; (i) XRD patterns of corresponding samples (from bottom to top).

Fig. S7. XRD patterns of the samples prepared by thermal treatment of the methanolic solution of $Co(NO_3)_2$ and Hmim under different conditions: at 50 °C for 24 h (top), at 50 °C for 4 h (middle), and at 40 °C for 24 h (bottom).

Fig. S8. (a) TEM image, (b) SEM image and (c) XRD pattern of the sample prepared from a methanolic solution of $Co(NO_3)_2$, Hmim and NaOH at room temperature for 24 h.

Fig. S9. SEM images of (a) Co-LDHs-2 and (b) ZIF-67 RDs based on the transformation route; (c) XRD patterns of Co-LDHs-2 (blue curve) and ZIF-67 RDs (black curve).

Fig. S10. AFM image of Co-LDH sheets that were prepared by suctioning the supernatant after sonication of the Co-LDHs-2 in ethanol with an ultrasonic bath for 30 min and centrifugation at 3000 rpm.

Fig. S11. TEM and SEM images of (a, b) cage-like Co-LDHs and (d, e) ZIF-67 RDs obtained by the transformation route involving their respective solid precursors without separation from synthetic systems; XRD patterns of (c) cage-like Co-LDHs and (f) ZIF-67 RDs.

Fig. S12. Ex-situ TEM images of intermediates captured at (a) 4 h, (b) 8 h, (c) 24 h and (d) 2 d in the transformation process from purified ZIF-67 to Co-LDHs; (e) XRD patterns of these intermediates.

Fig. S13. Ex-situ TEM images of intermediates captured at (a) 4 h, (b) 12 h, (c) 24 h, (d) 2d, (e) 3 d and (f) 6 d in the transformation process from purified Co-LDHs to ZIF-67; (g) XRD patterns of the intermediates.

Fig. S14. Derivative LSV curves at low current density to evaluate the onset potential of

electrocatalysts.

Fig. S15. CV curves obtained with different scan rates of 20, 40, 60, 80, 100 and 120 mV s⁻¹: (a) Co-LDHs-1, (b) Co-LDHs-2, (c) cage-like Co-LDHs obtained by a cycling transformation route, (d) *d*-Co-LDHs-1, (e) *d*-Co-LDHs-2, and (f) disassembled cage-like Co-LDHs obtained by a cycling transformation route.

Fig. S16. High resolution XPS spectrum of Co-LDHs-1 collected in the region of from 50 to 75 eV. In the region, Fe3p binding energy peaked at ~53.7 eV and ~55.6 eV cannot be detected, signifying that Co-LDHs-1 are not be doped with Fe element.

Fig. S17. d-Co-LDHs-1 (top), and d-Co-LDHs-2 (bottom). From left to right, TEM images,

SEM images and AFM images of samples.

Fig. S18. XPS Co 2p spectra of *d*-Co-LDHs-1.

Fig. S19. The average Tafel plots of a series of Co-LDHs and RuO_2 originated from three independent *iR*-compensated LSV curves.

Fig. S20. Comparison of mass activity of a series of Co-LDHs and RuO_2 at an overpotential of 300 mV.

Fig. S21. Long-term stability tests of Co-LDHs loaded on GC electrodes via potential sweeps

between 0.3 V and 0.6 V vs Hg/HgO with a scan rate of 10 mV s⁻¹ for 3000 cycles.

Fig. S22. Electrocatalytic performance of ZIF-67: (a) the *iR*-compensated LSV curves and (b) Tafel plots in 1 M KOH solution with a scan rate of 5 mV s⁻¹; (c) Nyquist plots at overpotential of 395 mV and (d) the capacitive current densities as a function of scan rates of CV curves at potential of 1.28 V vs RHE.

Fig. S23. Chronoamperometry tests of Co-LDHs loaded CFP electrodes to evaluate Co-LDH electrocatalyst stability: (a) Co-LDHs-1, (b) Co-LDHs-2, (c) *d*-Co-LDHs-1, and (d) *d*-Co-LDHs-2. Inset shows LSV curves before and after 8 hour's electrolysis.

The decrease of the current density of all electrodes is less than 10 % after 8 hours.

Fig. S24. TEM images and SEM images of (a, b) cage-like Co-LDHs and (d, e) ZIF-67 RDs prepared following a cycling transformation process (from non-purified Co-LDHs-1 to ZIF-67 to cage-like Co-LDHs; from non-purified ZIF-67 RDs to cage-like Co-LDHs to ZIF-67 RDs), respectively; corresponding XRD patterns of (c) cage-like of Co-LDHs and (f) ZIF-67 RDs.

Fig. S25. AFM image of Co-LDH sheets that was prepared by suctioning the supernatant after sonication of the cage-like Co-LDHs prepared by a cycling transformation route in ethanol with a ultrasonic bath for 30 min and centrifugation at 3000 rpm.

Fig. S26. Electrocatalytic performance of cage-like Co-LDHs prepared by a cycling transformation route and corresponding dispersive Co-LDH sheets. (a) The *iR*-compensated LSV curves and (b) Tafel plots in 1 M KOH solution with a scan rate of 5 mV s⁻¹; (c) Nyquist plots at overpotential of 395 mV and (d) the capacitive current densities as a function of scan rates of CV curves at potential of 1.28 V.

Both electrodes of cage-like Co-LDHs and dispersive Co-LDH sheets give overpotentials of $\eta_{10} = 321$ and 290 mV, Tafel slopes of 77.7 and 57.0 mV dec⁻¹, $R_{ct} = \sim 1.0$ and 1.21 Ω , and capacitance values of 20.0 and 62.8 mF cm⁻²

Fig. S27. TEM images and SEM images of (a, b) intermediate of ZIF-67 RDs and (d, e) final product of cage-like Co-LDHs prepared by cycling transformation of the used Co-LDHs, respectively; corresponding XRD patterns of (c) ZIF-67 RDs and (f) cage-like Co-LDHs.

Fig. S28. Electrocatalytic performance of cage-like Co-LDHs prepared by cycling transformation of the used Co-LDHs and corresponding dispersive Co-LDH sheets. (a) The *iR*-compensated LSV curves and (b) Tafel plots in 1 M KOH solution with a scan rate of 5 mV s⁻¹; (c) Nyquist plots at overpotential of 395 mV and (d) the capacitive current densities as a function of scan rates of CV curves at potential of 1.28 V.

- Y. Wang, Y. Zhang, Z. Liu, C. Xie, S. Feng, D. Liu, M. Shao and S. Wang, *Angew. Chem. Int. Ed.*, 2017, 56, 5867-5871.
- 2 F. Song and X. Hu, *Nat. Commun.*, 2014, **5**, 4477.
- 3 W. Liu, J. Bao, M. Guan, Y. Zhao, J. Lian, J. Qiu, L. Xu, Y. Huang, J. Qian and H. Li, *Dalton Trans.*, 2017, DOI: 10.1039/C1037DT00906B.
- 4 J. Jiang, A. Zhang, L. Li and L. Ai, J. Power Sources, 2015, 278, 445-451.
- 5 H. Liang, F. Meng, M. Caban-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang and S. Jin, *Nano Lett.*, 2015, **15**, 1421-1427.
- 6 Q. Yang, T. Li, Z. Lu, X. Sun and J. Liu, *Nanoscale*, 2014, 6, 11789-11794.
- 7 F. Song and X. Hu, J. Am. Chem. Soc., 2014, 136, 16481-16484.
- 8 S. Chen, J. Duan, M. Jaroniec and S. Z. Qiao, *Angew. Chem. Int. Ed.*, 2013, **52**, 13567-13570.
- 9 C. Qiao, Y. Zhang, Y. Zhu, C. Cao, X. Bao and J. Xu, J. Mater. Chem. A, 2015, 3, 6878-6883.
- 10 Y. Li, L. Zhang, X. Xiang, D. Yan and F. Li, J. Mater. Chem. A, 2014, 2, 13250-13258.
- 11 D. Tang, Y. Han, W. Ji, S. Qiao, X. Zhou, R. Liu, X. Han, H. Huang, Y. Liu and Z. Kong, *Dalton Trans.*, 2014, 43, 15119-15125.
- 12 P. F. Liu, S. Yang, B. Zhang and H. G. Yang, *ACS Appl. Mater. Interfaces*, 2016, **8**, 34474-34481.
- 13 W. Ma, R. Ma, C. Wang, J. Liang, X. Liu, K. Zhou and T. Sasaki, ACS Nano, 2015, 9, 1977-1984.
- 14 J. Ping, Y. Wang, Q. Lu, B. Chen, J. Chen, Y. Huang, Q. Ma, C. Tan, J. Yang, X. Cao, Z. Wang, J. Wu, Y. Ying and H. Zhang, *Adv. Mater.*, 2016, 28, 7640-+.
- 15 R. Liu, Y. Wang, D. Liu, Y. Zou and S. Wang, 2017, DOI: 10.1002/adma.201701546.