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Experimental Section

Materials and characterization methods

All chemical reagents were used as received. Nafion solution (5 wt% in mixture of water 

and 2-propanol) was purchased from Sigma Aldrich, and other chemicals and solvents, 

including cobalt nitrate (Co(NO3)2·6H2O), imidazole, 2-methylimidazole (Hmim), 2-

ethylimidazole, benzimidazole, sodium hydroxide (NaOH), potassium hydroxide (KOH), 

methanol, ethanol, n-propanol and ethylene glycol, were purchased from Sinopharm Chemical 

Reagent Co., Ltd, China. 

Transmission electron microscopy (TEM) was performed for microstructural and 

morphological investigation with a Tecnai F30 operated at 300 kV. Scanning electron 

microscopy (SEM) was performed for structural and morphological investigation on 
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HITACHI UHR FE-SEM SU8220. X-ray diffraction (XRD) was carried out in a Rigaku 

D/Max 2400 automatic powder X-ray diffractometer with Cu-Kα radiation (λ = 1.5418 Å). 

Atomic force microscopy (AFM) was used to measure the thickness of sheets on Park 

Systems XE-70 with non-contact mode. The content of cobalt was evaluated by inductively 

coupled plasma atomic emission spectroscopy (ICP-AES) on Optima 2000DV. X-ray 

photoelectron spectroscopy (XPS) was used to analyze surface elemental composition and 

chemical state of samples on Thermo ESCALAB 250Xi with Al- Kα radiation (h = 1486.6 

eV). Linear-sweep voltammetry (LSV), cyclic voltammetry (CV), and chronoamperometry 

were measured on a CHI760E electrochemical workstation with a typical three-electrode cell. 

Electrochemical impedance spectroscopy (EIS) was collected on a ZAHNER ENNIUM 

electrochemical workstation with a typical three-electrode cell. 

Materials synthesis 

Preparation of ZIF-67 rhombic dodecahedra (RDs). In a typical synthetic procedure, 

Co(NO3)2 (0.6 mmol) and Hmim (1.2 mmol) were dispersed into methanol (7.5 mL), 

respectively; subsequently, Co(NO3)2 solution was slowly poured into Hmim solution with 

vigorously stirring. The resulting mixture in 20 mL of vial was kept at room temperature for 

24 h without turbulence. The final dark violet product was rinsed twice by methanol, and 

dried in vacuum at 100 oC for 12 h before further characterization.
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In the preparation procedure, ethanol was used to replace methanol to test solvent effect on 

production of ZIF-67 while other conditions were kept unchanged. 

Preparation of porous Co-LDHs (referred to Co-LDH-1). Co(NO3)2 (0.6 mmol) and Hmim 

(1.2 mmol) were sequentially added into a 20 mL of Teflon-lined stainless steel autoclave 

containing 15 mL of methanol with stirring, and subsequently heated at 100 oC for 4 h. The 

yellowish brown powder was rinsed twice by methanol, and dried in vacuum at 100 oC for 12 

h before further characterization.

The synthetic experiments were performed while substituting methanol with ethanol, n-

propanol, ethylene glycol, and water, respectively. It is noted that the reaction temperature 

was increased to 120 oC if ethylene glycol was used as solvent. In the synthetic experiments, 

imidazole, 2-ethylimidazole, and benzimidazole were also used to substitute for Hmim under 

otherwise identical conditions when methanol was served as the reaction medium.

Preparation of ZIF-67 RDs by transformation of Co-LDHs-1. The as-synthesized porous 

Co-LDHs (mole of cobalt = 0.6 mmol, calculation according to ICP-AES) were dispersed in 

methanol (15 mL) containing Hmim (1.2 mmol), and kept at room temperature for 10 d with 

gently stirring. The dark violet powder obtained was rinsed twice by methanol, and dried in 

vacuum at 100 oC for 12 h before further characterization.
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Non-purified Co-LDHs-1 was directly applied to the transformation experiment to prepared 

ZIF-67 RDs by the same procedure. In detail, Hmim (1.2 mmol) was introduced to the 

synthetic system of Co-LDHs-1 (15 mL); subsequently, the mixture was kept at room 

temperature for 10 d with gently stirring. Note the mole of Co2+ was evaluated based on the 

amount of Co(NO3)2 added in the preparation process of Co-LDHs-1.

Preparation of cage-like Co-LDH (referred to Co-LDH-2) by transformation of ZIF-67. 

The as-synthesized ZIF-67 RDs (0.6 mmol) were dispersed in methanol (15 mL), and then 

heated at 100 oC for 4 d by a solvothermal process. The final yellowish brown powder was 

rinsed twice by ethanol, and dried in vacuum at 100 oC for 12 h before further characterization.

Alternatively, non-purified ZIF-67 RDs were directly used to prepare Cage-like Co-LDHs 

via solvothermal treatment at 100 oC for 4 d.

Preparation of ZIF-67 RDs by a cycling transformation route. The non-purified ZIF-67 

RDs in the synthetic system (15 mL) were directly heated at 100 oC for 4 d through a 

solvothermal process. Afterwards, the yellowish brown intermediate of Co-LDHs was 

incubated at room temperature for 10 d with gently stirring after introducing Hmim (1.2 

mmol). Finally, the dark violet powder obtained was washed twice by methanol, and dried in 

vacuum at 100 oC for 12 h before further characterization.
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Preparation of cage-like Co-LDHs by a cycling transformation route. The non-purified 

porous Co-LDHs in the synthetic system (15 mL) were directly incubated at room 

temperature for 10 d with gently stirring after introducing Hmim (1.2 mmol). Subsequently, 

the dark violet intermediate of ZIF-67 was heated at 100 oC for 4 d through a solvothermal 

process. Finally, the yellowish brown powder obtained was washed twice by methanol, and 

dried in vacuum at 100 oC for 12 h before further characterization.

Preparation of dispersive Co-LDH (referred to d-Co-LDH) sheets. The as-synthesized Co-

LDHs (50 mg) were dispersed into formamide (50 mL), and the mixture was sonicated for 30 

min using a probe sonicator (JY92-IIN Ultrasonic Homogenizer, 650 W, 30%) and then 

stirred for 8 h. The final samples were separated by centrifugation at 3000 rpm to discard the 

solid, and subsequently the supernatant was collected by centrifugation at 13300 rpm. The 

resulting d-Co-LDH sheets were subjected to characterization after being washed with 

methanol.  Note that both d-Co-LDH samples were defined as d-Co-LDHs-1 and d-Co-LDHs-

2, which were derived from Co-LDHs-1 and -2, respectively.

Electrochemical measurements

Preparation of electrocatalyst inks: Electrocatalysts (5 mg) were dispersed into the mixture 

of water and 2-propanol with volume ratio of 1:1 (0.975 mL), and then Nafion solution (0.025 
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mL, 5 wt%) was added. The final mixture was sonicated in an ultrasonic bath for 20 min to 

form a well-dispersed suspension.

Preparation of work electrodes: Prior to utilization, glassy carbon (GC) electrodes (3 mm 

in diameter) were firstly polished with alumina suspension in deionized water on a Nylon 

plate; subsequently, the polished GC electrodes were rinsed with deionized water. Carbon 

fiber papers (CFPs) were sequentially treated by sonication in HNO3, H2O, ethanol and 

acetone for 30 min, respectively. Afterwards, a tape was used to define an area of 0.09 cm2. 

The resultant electrocatalyst ink (5 L) was drop-casted on the surface of a glassy carbon 

electrode or a CFP electrode. All electrodes prepared were dried at room temperature in air 

for 1 h. The GC/CFP electrodes loading electrocatalysts were used as the working electrode. 

Hg/HgO (1 M KOH) and polished Pt wire were used as the reference electrode and the 

counter electrode in a three-electron cell, respectively.

Electrochemical measurement: LSV tests were performed in 1 M KOH solution at a sweep 

rate of 5 mV s-1 with a potential window of 0 to 0.8 V vs Hg/HgO after 5 CV scans between 0 

V and 0.6 V. CV tests were carried out in 1 M KOH solution at variable sweep rate from 20 to 

120 mV s-1 with an increment of 20 mV s-1 with a potential window of 0.3 to 0.4 V vs 

Hg/HgO to measure the double-layer capacitance of electrocatalysts. Cycling stability of 

electrocatalysts was evaluated by successively scanning CV 3000 times with a potential 

window of 0.3 to 0.6 V vs Hg/HgO at a sweep rate of 10 mV s-1. EIS was collected in 1 M 
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KOH solution at overpotential of 395 mV in the frequency range from 0.1 Hz to 100 kHz with 

oscillation potential amplitudes of 5 mV. The aforementioned electrochemical tests were used 

GC electrodes as the work electrode in a three-electrode cell. Long-term stability for 

electrocatalysts on CFP electrodes was further investigated by chronoamperometry tests for 8 

h after 5 CV scans between 0 V and 0.6 V vs Hg/HgO in 1 M KOH solution. During the 

measuring process, the overpotentials were fixed at 300 mV for d-Co-LDHs-1 and -2 and 330 

mV for Co-LDHs-1 and -2. 

The Tafel plots were calculated by LSV curves based on an equation of = a + blgj. The 

potentials vs reversible hydrogen electrode (RHE) were obtained by converting the measured 

potentials vs Hg/HgO using the Nernst equation of ERHE =EHg/HgO + 0.0591pH + 0.098
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Table S1. Comparison of the electrocatalytic activity of cobalt-based LDHs towards OER.

Catalyst Preparation 
Method Electrolyte

Onset 
Potential

[V]

Current 
Density

[mA cm-2]

Ƞ(at 
corresponding

current density) 
[V]

Tafel 
Slope

[mV dec-1]
Ref

Co-LDH Solvothermal 1M KOH ~1.47 10 0.312/0.319/0.32
1

68.4/77.7/
77.9

This 
work

m-CO-LDH Solvothermal 1M KOH ~1.45 10 0.288/0.289/0.29 55.1/57.0/
60.9

This 
work

Exfoliated 
CoFe-LDH Hydrothermal 1M KOH 1.457 10 0.266 37.85 1

Exfoliated 
CoCo(NiCo/NiF

e)-LDH

Topochemical 
approach 1M KOH — 10 0.35(0.33/0.3) 45(41/40) 2

NiCo-LDH/NF Solvothermal 1M KOH 1.7 10 0.271 72 3

NiCo-LDH Solvothermal 0.1M KOH 1.52 10 0.42 113 4

Exfoliated NiCo-
LDH

Hydrothermal 
continuous-

flow synthesis
1M KOH — 10 0.367 40 5

NiCoFe-LDH Hydrothermal 1M KOH 1.46 80 0.257 53 6

CoMn-LDH Co-
precipitation 1M KOH — 10 0.324 43 7

NiCo-LDH/N-G Hydrothermal 0.1M KOH 1.58 — 614 8

ZnCo-LDH
Microwave-

assisted 
approach

0.1M KOH 1.46 2 0.375 101 9

ZnCo-LDH Electrodepositi
on 0.1M KOH 1.56 2 0.427 83 10

ZnCo-LDH/G Co-
precipitation 0.1M KOH 1.56 10 0.43 73 11

CoFe-LDH-F Hydrothermal 1M KOH — 10 0.3 40 12

NiFe-LDH-rGO Topochemical 
oxidation 1M KOH — 10 0.21 40 13

3DGN/CoAl-
LDH Hydrothermal 1M KOH — 10 0.252 36 14

Exfoliated 
CoFe-LDH Hydrothermal 1M KOH — 10 0.232 36 15
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Fig. S1. The optical images of ZIF-67 prepared by (a) mixing Co(NO3)2 and Hmim in 

methanol at room temperature, (b) transformation of Co-LDHs-1 and (c) cycling 

transformation from non-purified ZIF-67 to Co-LDHs to ZIF-67.
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Fig. S2. TEM images and SEM images of (a, b) ZIF-67 RDs and (c, d) Co-LDHs-1 by mixing 

Co(NO3)2 and Hmim in methanol at room temperature for 24 h and at 100 oC for 4 h, 

respectively; (e) the corresponding XRD patterns; (f) AFM image of Co-LDH sheets that 

were prepared by suctioning the supernatant after sonication of Co-LDH-1 in ethanol with an 

ultrasonic bath for 30 min and centrifugation at 3000 rpm.
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Fig. S3. The optical images of Co-LDHs prepared by (a) solvothermal treatment of Co(NO3)2 

and Hmim in methanol, (b) transformation of ZIF-67 and (c) cycling transformation from 

non-purified Co-LDHs to ZIF-67 to Co-LDHs.
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Fig. S4. N2 physisorption isotherm of Co-LDHs-1 at 77 K. 
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Fig. S5. (a) TEM image, (b) SEM image and (c) XRD pattern of Co-LDHs by solvothermal 

treatment of methanolic solution of Co(NO3)2 and 2-ethylimidazole at 100 oC for 4 h.
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Fig. S6. TEM images (left) and SEM images (right) of Co-LDHs prepared in (a, b) ethanol, (c, 

d) ethylene glycol and (e, f) n-propanol and ZIF-67 prepared in (g, h) ethanol; (i) XRD 

patterns of corresponding samples (from bottom to top).
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Fig. S7. XRD patterns of the samples prepared by thermal treatment of the methanolic 

solution of Co(NO3)2 and Hmim under different conditions: at 50 oC for 24 h (top), at 50 oC 

for 4 h (middle), and at 40 oC for 24 h (bottom).
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Fig. S8. (a) TEM image, (b) SEM image  and (c) XRD pattern of the sample prepared from a 

methanolic solution of Co(NO3)2, Hmim and NaOH at room temperature for 24 h.
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Fig. S9. SEM images of (a) Co-LDHs-2 and (b) ZIF-67 RDs based on the transformation 

route; (c) XRD patterns of Co-LDHs-2 (blue curve) and ZIF-67 RDs (black curve).
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Fig. S10. AFM image of Co-LDH sheets that were prepared by suctioning the supernatant 

after sonication of the Co-LDHs-2 in ethanol with an ultrasonic bath for 30 min and 

centrifugation at 3000 rpm.
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Fig. S11. TEM and SEM images of (a, b) cage-like Co-LDHs and (d, e) ZIF-67 RDs obtained 

by the transformation route involving their respective solid precursors without separation 

from synthetic systems; XRD patterns of (c) cage-like Co-LDHs and (f) ZIF-67 RDs.
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Fig. S12. Ex-situ TEM images of intermediates captured at (a) 4 h, (b) 8 h, (c) 24 h and (d) 2 
d in the transformation process from purified ZIF-67 to Co-LDHs; (e) XRD patterns of these 
intermediates.
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Fig. S13. Ex-situ TEM images of intermediates captured at (a) 4 h, (b) 12 h, (c) 24 h, (d) 2d, 
(e) 3 d and (f) 6 d in the transformation process from purified Co-LDHs to ZIF-67; (g) XRD 
patterns of the intermediates.
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Fig. S14. Derivative LSV curves at low current density to evaluate the onset potential of 

electrocatalysts.
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Fig. S15. CV curves obtained with different scan rates of 20, 40, 60, 80, 100 and 120 mV s-1: 

(a) Co-LDHs-1, (b) Co-LDHs-2, (c) cage-like Co-LDHs obtained by a cycling transformation 

route, (d) d-Co-LDHs-1, (e) d-Co-LDHs-2, and (f) disassembled cage-like Co-LDHs obtained 

by a cycling transformation route.
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Fig. S16. High resolution XPS spectrum of Co-LDHs-1 collected in the region of from 50 to 

75 eV. In the region, Fe3p binding energy peaked at ~53.7 eV and ~55.6 eV cannot be 

detected, signifying that Co-LDHs-1 are not be doped with Fe element.
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Fig. S17. d-Co-LDHs-1 (top), and d-Co-LDHs-2 (bottom). From left to right, TEM images, 

SEM images and AFM images of samples.
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Fig. S18. XPS Co 2p spectra of d-Co-LDHs-1.
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Fig. S19. The average Tafel plots of  a series of Co-LDHs and RuO2 originated from three 
independent iR-compensated LSV curves.
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Fig. S20. Comparison of mass activity of  a series of Co-LDHs and RuO2 at an overpotential 
of 300 mV.
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Fig. S21. Long-term stability tests of Co-LDHs loaded on GC electrodes via potential sweeps 

between 0.3 V and 0.6 V vs Hg/HgO with a scan rate of 10 mV s-1 for 3000 cycles.
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Fig. S22. Electrocatalytic performance of ZIF-67: (a) the iR-compensated LSV curves and (b) 

Tafel plots in 1 M KOH solution with a scan rate of 5 mV s-1; (c) Nyquist plots at 

overpotential of 395 mV and (d) the capacitive current densities as a function of scan rates of 

CV curves at potential of 1.28 V vs RHE.
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Fig. S23. Chronoamperometry tests of Co-LDHs loaded CFP electrodes to evaluate Co-LDH 

electrocatalyst stability: (a) Co-LDHs-1, (b) Co-LDHs-2, (c) d-Co-LDHs-1, and (d) d-Co-

LDHs-2. Inset shows LSV curves before and after 8 hour’s electrolysis.

The decrease of the current density of all electrodes is less than 10 % after 8 hours.
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Fig. S24. TEM images and SEM images of (a, b) cage-like Co-LDHs and (d, e) ZIF-67 RDs 

prepared following a cycling transformation process (from non-purified Co-LDHs-1 to ZIF-

67 to cage-like Co-LDHs; from non-purified ZIF-67 RDs to cage-like Co-LDHs to ZIF-67 

RDs), respectively; corresponding XRD patterns of (c) cage-like of Co-LDHs and (f) ZIF-67 

RDs.
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Fig. S25. AFM image of Co-LDH sheets that was prepared by suctioning the supernatant after 

sonication of the cage-like Co-LDHs prepared by a cycling transformation route in ethanol 

with a ultrasonic bath for 30 min and centrifugation at 3000 rpm.
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Fig. S26. Electrocatalytic performance of cage-like Co-LDHs prepared by a cycling 

transformation route and corresponding dispersive Co-LDH sheets. (a) The iR-compensated 

LSV curves and (b) Tafel plots in 1 M KOH solution with a scan rate of 5 mV s-1; (c) Nyquist 

plots at overpotential of 395 mV and (d) the capacitive current densities as a function of scan 

rates of CV curves at potential of 1.28 V.

Both electrodes of cage-like Co-LDHs and dispersive Co-LDH sheets give overpotentials of 

η10 = 321 and 290 mV, Tafel slopes of 77.7 and 57.0 mV dec-1, Rct = ~1.0 and 1.21 , and 

capacitance values of 20.0 and 62.8 mF cm-2
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Fig. S27. TEM images and SEM images of (a, b) intermediate of ZIF-67 RDs and (d, e) final 

product of cage-like Co-LDHs prepared by cycling transformation of the used Co-LDHs, 

respectively; corresponding XRD patterns of (c) ZIF-67 RDs and (f) cage-like Co-LDHs.
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Fig. S28. Electrocatalytic performance of cage-like Co-LDHs prepared by cycling 

transformation of the used Co-LDHs and corresponding dispersive Co-LDH sheets. (a) The 

iR-compensated LSV curves and (b) Tafel plots in 1 M KOH solution with a scan rate of 5 

mV s-1; (c) Nyquist plots at overpotential of 395 mV and (d) the capacitive current densities 

as a function of scan rates of CV curves at potential of 1.28 V.
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