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Basic characterizations

The crystallographic structures of the materials were obtained using a Bruker D8 advanced 

diffractometer powder X-ray diffraction (PXRD) with an X’celerator module and Cu Kα (λ = 

1.54050 Å) radiation at room temperature, with a step size of 10° in 2θ. Raman spectra were 

obtained using a Renishaw spectromicroscopy system equipped with a 20× objective optical 

microscope. The microstructure and morphology were examined by using a field emission 

scanning electron microscope (FE-SEM) (Hitachi S-4800) equipped with a Bruker Quantax energy 

dispersive spectrometer (EDS). Transmission electron microscope (TEM) images were taken on 

FEI Tecnai F20 and F30 microscopes. Elemental analysis was performed on a Vario EL Elemental 

Analyzer. Surface characterization of elemental electronic states was measured by X-ray 

photoelectron spectroscopy (XPS) (Kratos Axis Ultra Imaging Photoelectron Spectrometer). The 

instrument was equipped with a monochromatic Al-Kα X-ray source (hν=1468.7 eV). The 

nitrogen isotherms of the materials were measured within the pressure range 0-1 atm at 77K using 

a Quadrasorb system from a Quantachrome Autosorb-IQ gas adsorption analyzer. Applying the 

Brunauer-Emmett-Teller (BET) model and quenched solid state functional theory (QS-DFT) to 

these isotherms, specific surface areas and pore sizes distribution were determined for each 

material. 

Electrochemical measurement 

The electrochemical measurements were carried out by using a Zahner Zennium electrochemical 

workstation in case of both three-electrode configuration and two-electrode device. For the 

working electrode of three-electrode system, a mixture slurry containing of 80 wt% active 

materials, 10 wt% Super P and 10 wt% PTFE binder was prepared then rolled with the assistance 

of ethanol to form a uniform film with a typical areal mass of approximately 2.5 mg cm-2. The film 
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electrode was then pressed between two nickel foam, and dried under vacuum at 80 ˚C for 12 h. A 

platinum mesh electrode and an Ag/AgCl electrode prefilled with saturated KCl aqueous solution 

were used as the counter and the reference electrodes, respectively. The cyclic voltammograms 

(CV) were acquired in a potential range between 0 and 0.55 V at different scan rates, and the 

charge-discharge processes were performed between 0 and 0.5 V at different current densities in a 

2 M KOH aqueous electrolyte. Based on the galvanostatic discharge curve, the specific capacity 

Q (C g-1) of the battery-type R-NiS/rGO was calculated as follows:

                       (S1)𝑄 = 𝑖𝑚∆𝑡

where im=I/m (A g-1) is the current density, m is the mass of the active material, (s) is the ∆𝑡

discharge time. 

The cyclic stability was evaluated by galvanostatic charge-discharge measurements at a current 

density of 20 A g-1. 

The electrochemical measurements of the two-electrode device containing R-NiS/rGO as positive 

electrode and C/NG-A as negative electrode (-1-0 V) with separator of MPF30AC-100 (Nippon 

Kodoshi Corporation, Kochi, Japan) in a split test cell (MTI Corporation) configuration were 

carried out in a 2 M KOH electrolyte. The negative electrode film was prepared with the same 

method described above with 90 wt% C/NG-A and 10 wt% PTFE binder.  The mass ratio of 

positive electrode to negative electrode is determined according to charge balance theory (

). Based on the CV results from three-electrode system,𝑞 + = 𝑞 ‒

                                                 (S2)𝑞 = ∫𝑖𝑚𝑑𝑉/𝑣
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where q represents the charge, m is the mass of the active material, and  is the integral area ∫𝑖𝑑𝑉/𝑣

from CV. 

In order to achieve charge balance, , thus, 
𝑚 + ∙ (∫𝑖𝑑𝑉

𝑣 ) + = 𝑚 ‒ ∙ (∫𝑖𝑑𝑉
𝑣 ) ‒

                 (S3)
𝑚 + :𝑚 ‒ = (∫𝑖𝑑𝑉

𝑣 ) ‒ :(∫𝑖𝑑𝑉
𝑣 ) +       

The CV was acquired in a potential range between 0 and 1.6 V at different scan rates, and the 

charge-discharge processes were performed by cycling the potential from 0 to 1.6 V at different 

current densities. The cyclic stability was evaluated by galvanostatic charge-discharge 

measurements at a current density of 20 A g-1. 

The specific capacitance was calculated from the galvanostatic charge-discharge measurements 

using the following equation, 

        (S4)

𝐶 =
2𝑖𝑚∫𝑉𝑑𝑡

𝑉2|𝑉𝑓
𝑉𝑖 �

C represents the galvanostatic charge-discharge (GCD) specific capacitance.  is the integral ∫𝑉𝑑𝑡

current area, where V is the potential with initial and final values of Vi and Vf, respectively.  𝑖𝑚

=I/m is the current density, where I is the current and m is the mass of active materials. 

The energy density E (Wh kg-1) and power density P (W kg-1) in Ragone plot were calculated with 

the following equations,
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                                                 (S5)
𝐸 =

1
2

∙
𝐶 ∙ ∆𝑉2

3.6
     

                                           (S6)
𝑃 = 3600 ∙

𝐸
∆𝑡

         

Where C is the specific gravimetric capacitance (F g-1), ΔV is the potential window (V), and Δt is 

the discharge time (S).

Density functional theory (DFT) calculation

Density functional theory calculations were performed within VASP (Vienna ab-initio Simulation 

Package) {Efficient iterative schemes for ab initio total-energy calculations using a plane-wave 

basis set}. The generalized gradient approximation parameterized by Perdew, Burke and Ernzerhof 

under projector augmented wave function {Generalized gradient approximation made simple} was 

applied to pseudo-potentials of Ni and S. Three surface slabs were constructed and visualized via 

VESTA, with a 15 Å vacuum space for each one. (110), (101) and (102) slabs have 64, 128 and 

160 atoms per supercell. Energy was sampled by  reciprocal space mesh centered at 1 × 1 × 1

gamma point. To ensure convergence, an energy cut-off of 400 eV was chosen to reach the energy 

and force accuracy of 1E-6 eV and 0.01 eV/ Å. Energy correction {Periodic boundary conditions 

in ab-initio calculations} due to polarization of surface slab was considered for all three slabs, as 

well as charged hydroxyl, i.e. OH-. The surface energy was calculated via the equation shown 

below:

    (S7)𝐸𝑠𝑢𝑟 = (𝐸𝑠𝑙𝑎𝑏 ‒ 𝑛𝐸𝑢𝑛𝑖𝑡 ‒ 𝑏𝑢𝑙𝑘)/2𝐴

where  is the surface energy,  and  is the total energy of slab super-cell and bulk 𝐸𝑠𝑢𝑟 𝐸𝑠𝑙𝑎𝑏 𝐸𝑢𝑛𝑖𝑡 ‒ 𝑏𝑢𝑙𝑘

unit-cell,  is the multiplicity of slab cell over unit cell,  is surface area of the slab.𝑛 𝐴

The adsorption energy of OH- was calculated via the equation shown below:
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    (S8)
𝐸𝑎𝑑𝑠 = 𝐸 ∗‒ 𝑂𝐻 ‒ 𝐸𝑠𝑙𝑎𝑏 ‒ 𝐸

𝑂𝐻 ‒

where  is the total energy of NiS slab with hydroxyl group adsorbed on one surface Ni site, 𝐸 ∗‒ 𝑂𝐻

 is the total energy of slab super-cell, and  is the total energy of an isolated OH-.𝐸𝑠𝑙𝑎𝑏
𝐸

𝑂𝐻 ‒
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Figure S1. SEM images of (a) Ni-MOF-74 bulk materials, (b) Ni-MOF-74/rGO hybrid 

nanostructure, and (c-d) R-NiS/rGO nanohybrids. The arrows in (b), (c), and (d) indicate different 

surface morphologies between Ni-MOF-74/rGO and R-NiS/rGO.

Figure S2. EDS sum spectrum of the R-NiS/rGO.
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Figure S3. PXRD patterns of the as-synthesized Ni-MOF-74, Ni-MOF-74/rGO, and the simulated 

MOF-74, inset is the enlarged Ni-MOF-74/rGO XRD pattern.

Figure S4. N2 adsorption-desorption isotherms and corresponding pore size distribution plot 

(inset) of a) Ni-MOF-74 and b) Ni-MOF-74/rGO.
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Figure S5. TEM images of the NiS nanorod decorated on the graphene sheets.

Figure S6. XPS survey spectrum of the R-NiS/rGO.
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Figure S7. a) CV curves of N-NiS, b) GCD curves of N-NiS.

Figure S8. a) SEM image of the C/NG-A, b) CV curves of the C/NG-A at different scan rates, c) 

GCD curves of the C/NG-A at different current densities, and d) Specific capacitances and rate 

capability of the C/NG-A.



11

Figure S9. a) CV comparison between the positive and negative electrodes of the R-

NiS/rGO//C/NG-A device, b) Specific capacitances and rate capability of the R-NiS/rGO//C/NG-

A hybrid supercapacitor.

Figure S10. α-NiS slabs: (a) (110), (b) (102), and (c) (101) with surface exposed to vacuum. 

Black and copper balls are surface Ni and S atoms, while silver and yellow ones are the rest Ni 

and S atoms. Red, green and blue arrows are lattice vectors a, b and c. Upper pictures are side 

view; lower picture is vertical view.


