Supporting Information

Phase Separation in MOF: One Effective Route to Construct Core-shell FeS@Carbon Nanocomposite Encapsulated in Three-Dimensional Graphene as Flexible High-Performance Anode for Sodium-Ion Battery

Fanxing Bu,[†] Peitao Xiao,[†] Jiadong Chen,[†] Mohamed F. Aly Aboud,[‡] Imran Shakir^{*,‡} and Yuxi Xu^{*,†}

Figure S1. (a-c) TEM images of 3DG/FeS@C obtained at 400 °C; (d-f) TEM images of 3DG/FeS@C obtained at 600 °C.

Figure S2. XRD patterns of neat PB and FeS.

Figure S3. (a) SEM and (b) TEM images of pure PB nanoparticles; (c) SEM and (d) TEM images of FeS micro-sized particles.

Figure S4. (a-c) Light-field TEM images of several FeS@C nanocomposites on 3DG. The scale bar is 50 nm. (d) SEM image of 3DG/FeS@C and corresponding Elemental mapping pictures of (e) Fe-S-C-N, (f) Fe, (g) S, (h) C and (i) N. The scale bar is 1um.

Figure S5. XRD patterns of the obtained products collected at different reaction temperature for different reaction time, (a) 400 °C 0 h, (b) 600 °C 0 h, (c) 800 °C 0 h, (d) 800 °C 1 h.

Figure S6. TGA curves of 3DG/FeS@C-H, 3DG/FeS@C, and 3DG/FeS@C-L at 10 °C /min

in air flow.

Figure S7. SEM images of 3DG/FeS@C-H (a, b) and 3DG/FeS@C-L (c, d).

Figure S8. Cycling performance of 3DG/HC obtained by chemical etching of 3DG/FeS@C and 3DG at 0.1 A/g.

Figure S9. TEM pictures of 3DG/FeS@C after different discharge/charge cycles: (a) 1st discharge, (b) 1st charge, (a) 10th discharge, (b) 10th charge, (a) 40th discharge, (b) 40th charge, (a) 80th discharge, (b) 80th charge.

Figure S10. XRD pictures of 3DG/FeS@C at different discharge cycles.

Figure S11. XRD pictures of 3DG/FeS@C at different charge cycles.

Figure S12. CV profiles of 3DG/FeS@C at a scan rate of 0.1 mV s⁻¹.

Figure S13. Rate performance of 3DG/FeS@C, 3DG/FeS@C -L, 3DG/FeS@C -H, and FeS.

Figure S14. EIS plots of 3DG/FeS@C and FeS before cycle (a), and 3DG/FeS@C before and after cycle test (b).

 Table S1. Comparison of electrochemical performance of 3DG/FeS@C and recently reported

 typical MS-based anode materials.

Matariala	Ratio of	Area mass	Current	Capacity	High current	Capacity	Capacity	
structure	active	loading	density	(mAh/g)/	density	(mAh/g)/	Retention	Ref.
Siluciule	materials	(mg/cm ²)	(mA/g)	after cycles	(mA/g)	after cycles	(Cycles)	
				410 / 60		280 / 200		Angew.
FeS / CA	80%	N.A.	100	328	500	224	N.A.	Chem. Int.Ed.
				(by electrode)		(by electrode)		2016,55,
								15925
Cara aball				488 / 300		368 / 500		Nat. Commun.
	80%	~1.5-2.0	100	390	1000	294.4	N.A.	2015,6,
FeS/C				(by electrode)		(by electrode)		8689
FeS@C on								ACS Appl
Carbon	100%	ΝΑ	01.3	430 / 50	730	150 / 200	ΝΑ	Mater Interfaces
Calbon	100 /8	N.A.	91.5	(by electrode)	730	(by electrode)	N.A.	
Cloth								2015, 7, 27804
				547 / 50		340 / 50		
FeS-rGO	70%	0.5	1000		6000		. N.A.	Chem. Eur.J.
				383		238		2016, 22,2769
				(by electrode)		(by electrode)		
				345 / 500		365.4 / 15		J. Alloys and
FeS@C-N	70%	1.0	100	242	800	256	N.A.	Compounds
				(by electrode)		(by electrode)		2016, 688, 790
				E11/10		404 / 50		
Co9S8-				511710		404 / 50		CARBON 2015,
carbon	70%	N.A.	100	358	500	283	80%	94, 85
				(by electrode)		(by electrode)		
				636 / 10		420 / 1000		small 2016 12
CoS-rGO	80%	1.0	100	509	1000	336	88%	1250
				(by electrode)		(by electrode)		1559
CNT / CoS	80%	2.0	100	470 / 100	500	398 / 200	90%	J. Power
				376		318		Sources 2017,
				(by electrode)		(by electrode)		339, 41
				728 / 30		690 / 100		Nana Baa 2016
CoS2	80%	~1.3	100	582	1000	552	N.A.	INALIU Res. 2010,
				(by electrode)		(by electrode)		9, 198
Core-shell	70%	1.4	200	453 / 10	500	396 / 100	86%	ACS Appl.

				317		277		Mater. Interfaces
SnS-MoS2				(by electrode)		(by electrode)		2015, 7, 24694
				240.8 / 100		192.1 / 15		ACS Appl.
VS / rGO	70%	1.2-1.5	100	168	800	134	N.A.	Mater. Interfaces
				(by electrode)		(by electrode)		2015, 7, 20902
				699.1 / 100		368 / 500		ACS Appl.
Sb2S3@C	70%	N.A.	100	489	3200	294.4	N.A.	Mater. Interfaces
				(by electrode)		(by electrode)		2015, 7, 19362
ZnS-				630 / 120		390.6 / 30		
Sb2S3@C	70%	ΝΔ	100	441	800	273	ΝΑ	ACS Nano.
Core-Double	1070	N .A.	100	441	000	215	N.A.	2017, 11, 6474
Shell				(by electrode)		(by electrode)		
single-				854 / 5		484 / 100		Angew, Chem
layered	700/		100		1000		00.4%	
MoS2/carbo	70%	N.A.	100	598	1000	339	69.1%	Int. Ed. 2014,
n				(by electrode)		(by electrode)		53, 2152
FeS2@C				511 / 100		330 / 800		Energy Environ.
core-shell	70%	1.2	100	358	2000	231	N.A.	Sci.2017. 10,
nanoboxes				(by electrode)		(by electrode)		1576
				500 / 5		87 / 150		Adv. Energy
PBCS	80%	1.0-1.5	50	400	500	70	24.1%	Mater. 2017,
				400		70		1700180
				(by electrode)		(by electrode)		
FeS@C	100%	~2.0	100	734.5 / 130 (by electrode)	1000	358 / 300 (by electrode)	97.9%	This work

Note: In typical metal sulfide-based electrodes reported previously, polymer binder and/or conductive carbon are used to mix with active material to prepare electrodes. It is more meaningful to normalize the capacity to the total mass of the entire electrode for practical application. Therefore, we specially list these capacity values (denoted as "by electrode") for comparison.