Mesoporous Graphitic Carbon Microspheres with Controlled

Amount of Amorphous Carbon as Efficient Se Host Material for Li-

Se Batteries

Young Jun Hong¹, Kwang Chul Roh², and Yun Chan Kang^{1,*}

¹Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.

²Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju, Gyeongnam 52851, Republic of Korea.

*Correspondence authors. E-mail: yckang@korea.ac.kr (Yun Chan Kang, Fax: (+82) 2-928-3584)

Fig. S1. SEM images of (a) AC, (b) GC-AC-Fe-TiO, (c) GC-Fe-Fe₂O₃-TiO and (d) GC-TiO microspheres.

Fig. S2. XRD patterns of (a) A-C, (b) GC-AC-Fe-TiO, (c) GC-Fe-Fe₂O₃-TiO and (d) GC-TiO microspheres.

Fig. S3. SEM images of A-C/Se microspheres.

Fig. S4. N_2 gas adsorption and desorption isotherms and the BJH pore size distributions of GC-TiO and A-C microspheres before and after Se infiltration measured by the TriStar 3000 analyzer.

Fig. S5. Initial discharge and charge curves of GC-TiO microspheres without Se at a current density of 0.5 C.

Fig. S6. (a) Initial discharge and charge curves and (b) Cyclic voltammetry (CV) curves of A-C microspheres.

Fig. S7. Cycling performance of GC-TiO microspheres without Se at a current density of 0.5 C.

Fig. S8. Effect of loading rate of cathode material on cycling performance of GC-TiO/Se electrode at a current density 0.5 C.

Fig. S9. Morphologies of (a) Fe-AC-GC microspheres and (b) cycling performances of GC-TiO/Se and GC/Se microspheres at a constant current of 0.5 C.

Fig. S10. Morphology of GC-TiO/Se microspheres obtained after 100 cycles.

Table S1. Electrochemical properties of various nanostructured materials applied as lithium-selenium batteries reported in the previous literatures.

Morphology [preparation method]	Se content (%)	Current density	Initial discharge/char ge capcities [mA h g ⁻¹]	Discharge capacity [mA h g ⁻¹] and (cycle number)	Rate capacity [mA h g ⁻¹]	Ref.
GC-TiO/Se composite microsphere ["drop and drying" & two- step post-treatment]	70	0.5 C	1266/665	584 (850)	435 (10 C)	This work
Nitrogen-containing hierarchical porous carbon [template-assisted]	56.2	2 C	435/~314	305 (60)	~246 (5 C)	S1
Macro-/micro-porous biochar- based framework [carbonizaion of pomelo]	56.1	0.2 C	877.2/597.4	467 (300)	421 (2 C)	S2
Porous hollow carbon bubbles [hydrothermal]	~50	0.1 C	691.1/454.6	606.3 (120)	431.9 (1 C)	S3
Graphene–encapsulated selenium / polyaniline core– shell nanowires [<i>in situ</i> chemical oxidative polymerization]	~59.7	0.1 C	917/~708	540 (100)	430 (5 C)	S4
Metal complex-derived porous carbon [salt-bake approach]	72	0.1 C	904/~635	636 (150)	547 (10 C)	S5
Porous carbon nanofiber webs [modified oxidative template assembly]	33.2	1 C	439/-	323.7 (300)	345.6 (1 C)	S6
Mesoporous carbon microsphere [spray drying]	50	0.5 C	513/-	300 (100)	320 (5 C)	S7
3D mesoporous carbon [heating melt-infiltration]	62	0.1 C (first 5 cycles)1 C	655/- 432/-	385 (1300)	274 (3C)	S8
Carbon bonded and encapsulated selenium composites [<i>in situ</i> carbonization]	54	100 mA g ⁻¹	862/560	430 (250)	280 (1200 mA g ⁻¹)	S9
Heteroatom-doped microporous carbon [carbonization of polypyrrole with KOH]	60	1 C	~1200/664	506 (150)	303 (20 C)	S10

References

- S1. Y. H. Qu, Z. A. Zhang, S. F. Jiang, X. W. Wang, Y. Q. Lai, Y. X. Liu and J. Li, J. Mater. Chem. A, 2014, 2, 12255-12261.
- S2. H. Zhang, F. Q. Yu, W. P. Kang and Q. Shen, *Carbon*, 2015, 95, 354-363.
- S3. J. J. Zhang, L. Fan, Y. C. Zhu, Y. H. Xu, J. W. Liang, D. H. Wei and Y. T. Qian, *Nanoscale*, 2014, 6, 12952-12957.
- H. Ye, Y. X. Yin, S. F. Zhang and Y. G. Guo, J. Mater. Chem. A, 2014, 2, 13293-13298.
- S5. X. N. Li, J. W. Liang, Z. G. Hou, W. Q. Zhang, Y. Wang, Y. C. Zhu and Y. T. Qian, *Adv. Funct. Mater.*, 2015, 25, 5229-5238.
- J. Zhang, Z. A. Zhang, Q. Li, Y. H. Qu and S. F. Jiang, *J. Electrochem. Soc.*, 2014, 161, A2093-A2098.
- S7. L. Liu, Y. J. Wei, C. F. Zhang, C. Zhang, X. Li, J. T. Wang, L. C. Ling, W. M. Qiao and D. H. Long, *Electrochim. Acta*, 2015, **153**, 140-148.
- K. Han, Z. Liu, J. M. Shen, Y. Y. Lin, F. Dai and H. Q. Ye, *Adv. Funct. Mater.*, 2015, 25, 455-463.
- S9. C. Luo, J. J. Wang, L. M. Suo, J. F. Mao, X. L. Fan and C. S. Wang, *J. Mater. Chem. A*, 2015, **3**, 555-561.
- S10. Z. Q. Yi, L. X. Yuan, D. Sun, Z. Li, C. Wu, W. J. Yang, Y. W. Wen, B. Shan and Y. H. Huang, *J. Mater. Chem. A*, 2015, 3, 3059-3065.