Construction of Microfluidic-Oriented Polyaniline Nanorod arrays

/Graphene Composite Fibers towards Wearable Micro-

Supercapacitors

Xingjiang Wu⁺, Guan Wu⁺*, Pengfeng Tan, Hengyang Cheng, Ri Hong, Fengxiang Wang and Su Chen*

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, P. R. China. †Contribute equally to this work.

*Corresponding author: gwu2016@njtech.edu.cn and chensu@njtech.edu.cn

Supplementary Table S1.	EIS molding data.	Parameter v	values from	curve-fitting	of the i	mpedance	results	shown ir
Figure 3e by using the equ	ivalent circuit des	cribed in Figu	ıre S7.					

	R ₀ /Ω	C ₁ /µF s ⁿ¹⁻ 1	n ₁	R_1/Ω	Zw/Ω	C ₂ /μF	n ₂
G fiber	286.6	0.18xe ⁻³	0.89	14.5	5.3	1.6	0.90
PNA/G fiber	263.7	0.23xe ⁻³	0.82	9.8	9.5	4.5	0.91

Supplementary Table S2. The energy densities of different fibers based micro-supercapacitors.

	Electrode material	Energy density (µWh cm ⁻²)	References
1	RGO	0.17	1
2	Ni@MnO ₂	1.04	2
3	CNT@Co ₃ O ₄	1.2	3
4	N-doped CNT	1.3	4
5	RGO+CNT	3.84	5
6	G/PPy	9.7	6
7	GCP-35@CMC	14.5	7
8	Our work	37.2	

Fig. S1. Electrochemical performance testing in a three-electrode system in $1M H_3PO_4$ aqueous solution. a) Photo of three-electrode system. The insert is schematic illustration of three-electrode system. b) CV curves of G and PNA/G fibers under the scan rates 50 mV s⁻¹. c) Charge–discharge curves of G and PNA/G fibers at current density of 0.1 mA cm⁻². d) The areal capacitance comparison diagram between G fiber and PNA/G fiber.

Fig. S2. Cyclic voltammetry of pure graphene fiber at different scan rates in H_3PO_4/PVA gel electrolyte.

Fig. S3. Cyclic voltammetry of PNA/G composite fiber at different scan rates in H₃PO₄/PVA gel electrolyte.

Fig. S4. The surface SEM images of PNA/G fiber at different polymerization times and the specific capacitances of PNA/G fiber in H3PO4/PVA gel electrolyte at different PNA contents after different polymerization times.

Fig. S5. Charge-discharge curves of pure graphene fiber at different current densities in H_3PO_4/PVA gel electrolyte.

Fig. S6. Charge-discharge curves of PNA/G composite fiber at different current densities in H₃PO₄/PVA gel electrolyte.

Fig. S7. The equivalent circuit model of micro-supercapacitors.

Fig. S8. Cyclic voltammetry of pure graphene fiber at different scan rates in EMITFSI/PVDF-HFP gel electrolyte.

Fig. S9. Cyclic voltammetry of PNA/G composite fiber at different scan rates in EMITFSI/PVDF-HFP gel electrolyte.

Fig. S10. Charge-discharge curves of pure graphene fiber at different current densities in EMITFSI/PVDF-HFP gel electrolyte.

Fig. S11. Charge-discharge curves of PNA/G composite fiber at different current densities in EMITFSI/PVDF-HFP gel electrolyte.

Fig. S12. Energy density versus power density of micro-SCs

Fig. S13. Photographs of two micro-SCs assembled in parallel to power smart watch. The inset is the back of device.

Fig. S14. Photographs of four micro-SCs woven into cloth to light up 13 constructed LEDs "123" logo. The inset is the back of device.

Fig. S15. Photographs of four micro-SCs assembled in parallel to power 19 LEDs constructed "FSSC" logo. The inset is the back of device.

Fig. S16. Photographs of five micro-SCs integrated on polyethylene terephthalate (PET) substrate to drive large-scale monochrome display. The inset is the back of device.

Notes and references

- 1. Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi and L. Qu, Advanced Materials, 2013, 25, 2326-2331.
- 2. Y. Lin, Y. Gao and Z. Fan, Advanced Materials, 2017, 29, 1701736.
- 3. F. Su, X. Lv and M. Miao, Small, 2015, 11, 854-861.
- 4. Z. Zhang, L. Wang, Y. Li, Y. Wang, J. Zhang, G. Guan, Z. Pan, G. Zheng and H. Peng, *Advanced Energy Materials*, 2016, **7**, 1601814.
- 5. L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun and C. Gao, *Nature Communications*, 2014, 5, 3754.
- 6. X. Ding, Y. Zhao, C. Hu, Y. Hu, Z. Dong, N. Chen, Z. Zhang and L. Qu, *Journal of Materials Chemistry A*, 2014, **2**, 12355-12360.
- 7. S. Cai, T. Huang, H. Chen, M. Salman, K. Gopalsamy and C. Gao, *Journal of Materials Chemistry A*, 2017, 5, 22489-22494.