Electronic Supplementary Information (ESI) Materials for Journal of Materials Chemitry A This journal is © The Royal Society of Chemistry 2018

Flexible gel-state thermoelectrochemical materials with excellent mechanical and thermoelectric performances based on incorporating Sn²⁺/Sn⁴⁺ electrolyte in polymer/carbon nanotube composites

Guangbao Wu,^{a,b} Yufeng Xue,^{a,b} Lei Wang,^a Xin Wang^{*,b} and Guangming Chen^{*,a,c}

^a Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China

^bKey Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 P. R. China

^c Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

E-mail: chengm@iccas.ac.cn (G. Chen).

*Corresponding author.

Figure S1 An example of the plot of Seebeck coefficient curve for the gel-state thermoelectrochemical materials by incorporating $\text{Sn}^{2+}/\text{Sn}^{4+}$ electrolytes in polymethylmethacrylate (PMMA)/single-wall carbon nanotube (SWCNT) composites, with 5.2 wt‰ SWCNT.