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Experimental Section

Preparation of ACM organic quasi-solid-state polymer electrolyte (QPE): The 

cross-linked acrylate rubber (ACM) membranes were prepared by the chemical cross-

linking method. Typically, ACM and diethylenetriamine (DETA) were dissolved 

separately in acetone. 4 wt% (with respect to the weight of ACM) DETA solution were 

then added into the ACM solution. After mechanical stirring for 8 h, the slightly yellow 

homogenous solutions were obtained. Then the homogenous solutions were let stand 
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for 20 min for deaeration and then cast onto PTFE plates. After drying completely at 

room temperature, the cross-linked ACM membranes were cured at 80 ℃ for 48 h. Then 

the uncross-linked part of ACM membranes was removed by extraction with acetone 

in a Soxhlet apparatus. Finally, the cross-linked ACM membranes were immersed in 

tetraethylammonium tetrafluoroborate-acetonitrile (Et4NBF4-AN) electrolyte for 1 h to 

obtain the stretchable ACM/Et4NBF4-AN organic QPE. 

Characterization: The swelling ratio of the crosslinked ACM membrane was 

calculated according to the following equation: swelling ratio = (Dw - Dd)/Dd × 100%, 

where Dd and Dw are the diagonal length of dry and swollen membranes, respectively. 

The ACM/Et4NBF4-AN electrolyte uptake was calculated according to following 

equation: electrolyte uptake = (Ww − Wd)/Wd × 100%, where Wd is the dry weight of 

the crosslinked ACM membrane dried in a vacuum oven at 60 °C, and Ww is the wet 

weight of the crosslinked ACM membrane immersed in Et4NBF4-AN. The mechanical 

properties of the crosslinked ACM membranes were evaluated with a Zwick Roell 

testing system at a tensile speed of 100 mm min-1. The ionic conductivity of the 

ACM/Et4NBF4-AN QPE was obtained by the blocking stainless steel 

(SS)//ACM/Et4NBF4-AN//SS model device using electrochemical impedance 

spectroscopy (EIS) with an AC amplitude of 5 mV from 105 to 1 Hz. The ionic 

conductivity (σ) was calculated from the bulk resistance (Rb, Ω) according to following 

equation: σ = L/(Rb × S), where L is the thickness (cm) of the ACM/Et4NBF4-AN 

organic QPE, S is the effective contact area (cm2), and Rb is obtained from the Nyquist 

plot.  



Calculating the electronic conductivity of film electrodes: The conductivities of 

samples were determined by SX 1934 four-probe instrument using tailored rectangular 

film electrodes of 4 × 2 mm. Firstly, the thickness of the sheet sample was measured 

by electronic digital display micrometer. Then the conductivity of the sheet sample can 

be obtained according to the equation as follows：
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  where ρ0 is the resistivity measurement of sheet samples,  is the thickness 
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correction function which can be obtained by looking up related tables, W is the 

thickness of sheet samples (μm), S is the probe spacing (1 mm), is the correction 
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function of the sample shape and measurement site. For a rectangular sheet sample of 

4 × 2 mm, its corresponding  is 0.4301. Based on all above, the conductivities of 
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all film electrode samples were obtained.

Calculating PDAA weight content of the ACM/MWCNTs@PDAA film based on 

TGA data: We used the mass residuals of ACM/MWCNTs, PDAA (71 wt% according 

to our previous work) and ACM/MWCNTs@PDAA at 800 °C for calculating the 

PDAA weight content (X) of the ACM/MWCNTs@PDAA composite film grown for 

2 C cm-2. According to the TGA curves (Figure 3d), the weight residuals of 

ACM/MWCNTs and ACM/MWCNTs@PDAA were read to be about 43 wt% and 50 

wt%, respectively. The PDAA weight content (X) of the composite can be calculated 

by using the following equation: 0.43(1-X) + 0.71X = 0.50. Thus, the PDAA weight 

content (X) of ACM/MWCNTs@PDAA was calculated to be 25 wt%.



Data analysis of electrochemical measurements: The specific capacitance of the 

three-electrode system (Cs, F cm-3) was calculated by using the following formula: 

Cs = I∆t/(VU)

where I (A) is the discharge current, ∆t (s) is the discharge time, V (cm3) is the volume 

of the stretchable film electrode, and U (V) is the potential window excluding IR drop. 

The volumetric specific capacitances of the two-electrode cell configuration (Ccell, F 

cm-3) was calculated by using the following equations: 

Ccell = I∆t/(VU)

where I (A) is the discharge current, ∆t (s) is the discharge time, V (cm3) is the total 

volumes of two electrodes and organic QPE, U (V) is the potential window excluding 

IR drop. 

The energy density (Ecell, mW h cm-3) and the power density (Pcell, W cm-3) for the 

two-electrode cell can be evaluated by using the following equations: 

Ecell = 0.5CcellU2/3.6

Pcell = 3.6Ecell/∆t

in which Ccell (F cm-3) is the volumetric specific capacitance of the two-electrode cell, 

U (V) is the potential window excluding IR drop, ∆t (s) is the discharge time.



Results and discussions

Fig. S1 Surficial FE-SEM images of ACM/MWCNTs films containing (a) 35 wt% 

MWCNTs and (b) 50 wt% MWCNTs.

Table S1 XPS results of crosslinked ACM, ACM/MWCNTs and 

ACM/MWCNTs@PDAA films for element content.

Element content (%)
Samples

C N O

Crosslinked ACM 67.7 5.6 26.7

ACM/MWCNTs 66.3 6.5 27.2

ACM/MWCNTs@PDAA 75.8 9.4 14.8



Fig. S2 Specific capacitances versus current densities for ACM/MWCNTs film 

electrode.

Fig. S3 Specific capacitance (at 1 mA cm-2) and capacitance retention (from 0 to 20 

mA cm-2) versus ACM/MWCNTs@PDAA films with various polymerization charge 

densities (1, 2 and 4 C cm-2).



Fig. S4 (a) FE-SEM image of ACM/MWCNTs@PDAA grown for 4 C cm-2. (b) 

Nyquist plots and (c) Electronic conductivity of ACM/MWCNTs@PDAA films 

grown for 1, 2 and 4 C cm-2.

Fig. S5 Stress-strain curves of ACM/MWCNTs, ACM/MWCNTs@PDAA grown for 

2 C cm-2 and ACM/MWCNTs@PANI grown for 3 C cm-2.



Fig. S6 FE-SEM image of ACM/MWCNTs@PANI film (grown for 3 C cm-2).

Fig. S7 FTIR spectrum of ACM/MWCNTs@PANI film (grown for 3 C cm-2).



Fig. S8 (a) Cyclic voltammograms at 10 mV s-1, (b) Galvanostatic charge/discharge 

curves at 2 mA cm-2 and (c) specific capacitance as a function of current densities from 

1 to 10 mA cm−2 of ACM/MWCNTs@PANI film electrodes with various 

polymerization charge densities (1, 3 and 5 C cm-2) in a three-electrode mode.



Fig. S9 (a) ACM membrane cross-linked with 4 wt% DETA after immersing in 

acetonitrile at 50 ℃ (The inserted photo shows the membrane before immersion). (b) 

Stress-strain curves and (c) Electrolyte uptake versus various immersion time for cross-

linked ACM membrane with 4 wt% DETA.



Fig. S10 Nyquist plots of ACM/MWCNTs@PANI//ACM/Et4NBF4-

AN//ACM/MWCNTs@PDAA oASSC (a) under static condition and (b) before and 

after 300 stretching cycles. 


