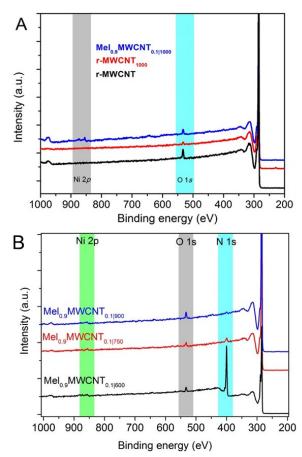
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

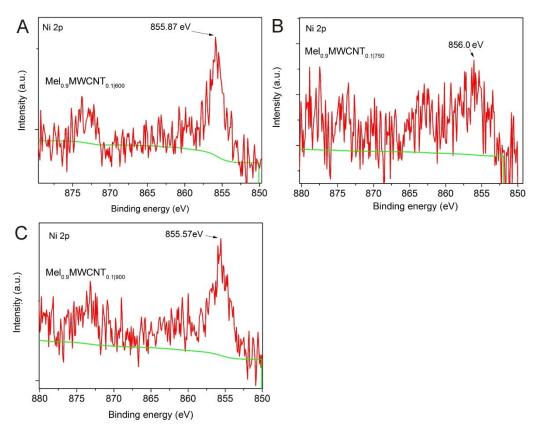
Electronic Supplementary Information (ESI)

for

From the Inside-Out: Leached of Metal Impurities in Multiwall Carbon Nanotubes for Purification or Electrocatalysis


Bryan H. R. Suryanto^a, Tim Fang^a, Soshan Cheong^b, Richard D. Tilley^{a,b} and Chuan Zhao^{a,*}

^a School of Chemistry, The University of New South Wales, Kensington, NSW, 2052, Australia.


^bMark Wainwright Analytical Centre, The University of New South Wales, Kensington, NSW, 2052, Australia

*Corresponding author e-mail: chuan.zhao@unsw.edu.au

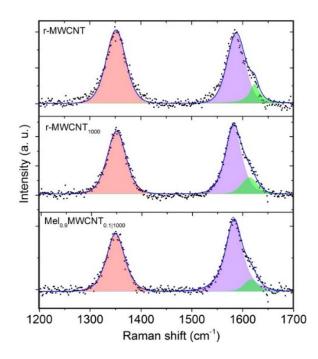
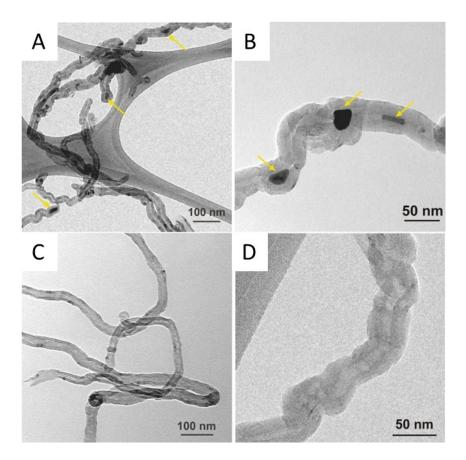

1. Supplementary data

Figure S1. XPS Survey scan of (A) r-MWCNT, r-MWCNT₁₀₀₀ and Mel_{0.9}MWCNT_{0.1|1000}, and (B) $Mel_{0.9}MWCNT_{0.1|T}$ pyrolyzed at various temperatures.

Figure S2. High resolution Ni 2p XPS scan for Mel_{0.9}MWCNT_{0.1|T} pyrolyzed at various temperatures (A) 600°C, (B) 750°C and (C) 900°C.

Figure S3. Raman spectrum of $Mel_{0.9}MWCNT_{0.1|1000}$, r-MWCNT₁₀₀₀ and r-MWCNT, the red and green shaded peaks correspond to defect sites, the purple shaded peaks correspond to sp²-hybridized C-C bonds.


Electronic Supplementary Information

Samula	Durification procedure		Metal co	ontent (ppm)	
Sample	Purification procedure –	Ni	Fe	Со	Total
raw MWCNT	As received	9907	102	71	10080
r-MWCNT	5 M HCl, 120°C	9049	104	66	9219
r-MWCNT ₁₀₀₀	1000°C, 5 M HCl, 120°C	5204	19	44	5267
$Mel_{0.9}MWCNT_{0.1 1000,1}$	1000°C, 5 M HCl, 120°C	901	18	7	926
Mel _{0.9} MWCNT _{0.1 1000,} ²	1000°C, 5 M HCl, 120°C	703	14	7	724
Mel _{0.9} MWCNT _{0.1 1000,} ³	1000°C, 5 M HCl, 120°C	294	13	<1	308
Mel _{0.9} MWCNT _{0.1 1000,} ⁴	1000°C, 5 M HCl, 120°C	107	13	<1	121

N.B: $Mel_{0.9}MWCNT_{0.1|1000}$, *y* corresponds to the number of melamine and HCl purification cycles. The uncertainty for ICP-MS analysis is $\pm 1.00\%$.

Sample	Mass Yield (%)	N 1s (at.%)	Ni 2 <u>p(</u> at.%)	
Mel _{0.9} MWCNT _{0.1 1000}	96.58	N.D.	0.10	
Mel _{0.9} MWCNT _{0.1 900}	96.15	0.47	0.21	
Mel _{0.9} MWCNT _{0.1 750}	98.11	1.66	0.12	
$Mel_{0.9}MWCNT_{0.1\mid 600}$	200.87	25.74	0.15	

Table S2. The amount of mass yield percentage of pyrolysed $Mel_{(1-x)}MWCNT_{x|T}$ and its associated N and Ni contents by XPS detection.

Figure S4. Transmission electron microscopy (TEM) characterization of MWCNTs, (A,B) r-MWCNT₁₀₀₀, (C,D) acid purified $Mel_{0.9}MWCNT_{0.1|1000}$. The yellow arrows in the figures point to heavier elements as indicated by the darker contrast in the images.

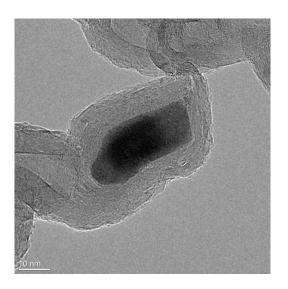
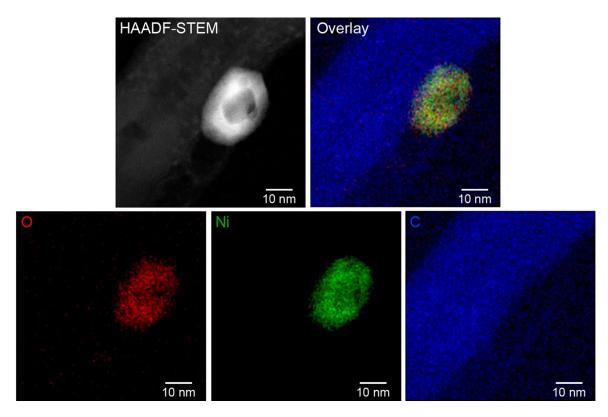



Figure S5. High resolution TEM shows the full encapsulation of Ni particles in MWCNT.

Figure S6. High-angle annular dark-field (HAADF)-STEM image and STEM-EDS elemental mapping of the leached metallic impurities *via* the leak mode, the same CNT as shown in Fig 2B. The false color overlay and maps of O K-edge (red), Ni K-edge (green) and C K-edge (blue) clearly show a nickel oxide nanoparticle on the surface of a MWCNT.

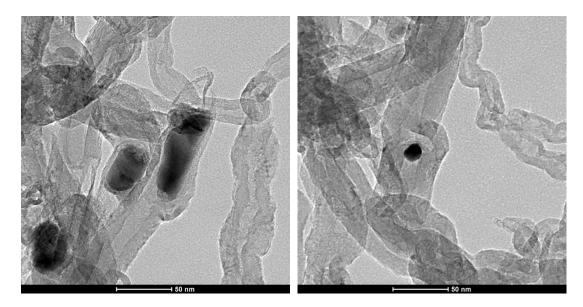


Figure S7. The typical TEM images of the $Urea_{0.9}MWCNT_{0.1|1000}$