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Figure S1. XRD pattern of the NiV-precusor@CMK-3.

Figure S2. FESEM images of pristine Ni;V,0g aggregates.
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Figure S3. FESEM images (A) HRTEM images (B) of Ni3V,03@CMK-3 composites.
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Figure S4. EDX pattern of as-prepared Ni;V,03@CMK-3 composites.
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Figure SS. XPS spectra of as-prepared Ni3V,03@CMK-3 composites: (A) survey, (B) Ni 2p, (C) V
2p, (D) O 1s and (E) C 1s.
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Figure S6. Raman spectroscopy of CMK-3 and the as-prepared Ni;V,03@CMK-3 composites.
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Figure S7. TGA curve of the as-prepared Ni3V,03@CMK-3 composites at a temperature ramp of 10
°C min’!
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Figure S8. The possible electrochemical reactions between lithium ions and Ni3;V,03@CMK-3
electrodes.

Voltage (V) vs. Li/Li"

In the first cycle, the distinct reduction peaks mainly come from the continuous intercalation from CMK-3. The
weak peak at 0.60 V is ascribed to the decomposition from Ni3;V,05 to NiO. However, it disappears in the follow
cycles due to the irreversible formation of a solid electrolyte interphase (SEI) and the decomposition of electrolyte.
Subsequently such NiO further transforms into numerous metallic Ni quantum dots, scattering on the amporphous
Li,V,0s. In the subsequent cycles, as the activation of Ni3;V,0g, the reduction peaks form into three stable peaks.
And the peak of intercalation from CMK-3 has been merged into the peak from the reaction: Li,V,05 + yLi* + ze

— LixyV20s. In summary, the possible reactions of electrodes that are shown in the following:
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Ni3V203 + (X‘f‘y)LiJr + (x+y)e' — 3NiO + Lix+yV205
NiO + 2Li* + 2e- — Ni + Li,0

Lix+yV205 +zLi+ze — Lix+y+ZV205

(M
@
3)

Among these reactions, Reaction 1 is irreversible because the decomposition and deconstruction of the crystal

structure of NizV,0Og.

The total reversible reaction is: NiO + Li,V,0s + (y+z+2)Li" + (y+z+2)e — Ni + Li;O + Lixiy+,V70s.
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Figure S9. Pseudocapacitive behaviors of pure CMK-3 electrodes: (A) CV curves at different scan
rates ranging from 0.2 to 1.5 mV s!; (B) corresponding log (i) vs. log (v) plots at each redox peak (i:
peak current; v: scan rate); (C) bar chart showing the percent of pseudocapacitive contribution at
different scan rates; and (D) CV curves with the pseudocapacitive fraction shown by the dark blue

region at a scan rate of 1.0 mV s
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Figure S10. i vs. v plots at each redox peak of CV curves of Ni3V,03@CMK-3 electrodes. (i: peak
current; v: scan rate).
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Figure S11. Pseudocapacitive behaviors of pure Ni;V,0g aggregates electrodes: (A) CV curves at
different scan rates ranging from 0.2 to 1.5 mV s’!; (B) corresponding log (i) vs. log (v) plots at each
redox peak (i: peak current; v: scan rate); (C) bar chart showing the percent of pseudocapacitive

contribution at different scan rates; and (D) CV curves with the pseudocapacitive fraction shown by
the dark blue region at a scan rate of 1.0 mV s-!.

S8



>
vy)

] ] | 1 T 1 ] T T |
1200 g 0 oa b e b8
‘7031000 o Charge capacity "o 1600 fr i R R Charée cépaéity l
é —a— Discharge capacity ﬁ \ : : i : —a— Discharge capacity
£ 50 3r-e) T S A T O A A
£ g 02105 {1.0 | 5.010.0120.0110.0150 1.0 |05 10.2
5. 600 Current density: 500 mA g’ g 800 : : : : : : : : : :
8 1 e g 8 % | iCurrent density: Ag" | :F’ﬁﬁ
2 400 R k2 SR EENEEE™
& 200 %) L 'R N
0 s L . 1 . 1 A 0 $ i ; i e ; i H i
0 50 100 150 200 0 20 40 60 80 100
Cycle number Cycle number
Figure S12. Cyclic stability (A) and rate capability (B) of pure CMK-3.
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Figure S13. Charge/discharge voltage profiles of (A) pure CMK-3 and (B) Ni;V,03 aggregates.
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Figure S14. Comparison of rate performance with other ternary metal vanadates for LIBs.
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Figure S15. Full part (A) and amplified part (B) Nyquist plots of Ni;V,03@CMK-3 and pristine
Ni;V,0g aggregates electrodes in fresh states and states after 100 cycles measured with an amplitude

of 5.0 mV over the frequency range of 100 kHz and 0.01 Hz by applying a sine wave.

S10



