Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. Electronicasiopplementary (ESI) for isovraal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

> Supplementary Information For Journal of Materials Chemistry A

Largely Enhanced V_{OC} and Stability in Perovskite Solar $% \mathcal{A}_{OC}$

Cells with Modified Energy Match by Couple 2D Interlayers

Yangyang Wang^a, Sen Wang^a, Xi Chen^a, Zengrong Li^a, Jie Wang^a, Tianhao Li^a, Xianyu Deng^a*

^a Research Center for Advanced Functional Materials and Devices, Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China.

Email: xydeng@hit.edu.cn

Fig. S1. Cross section SEM image of devices with both of MoS_2 and PEG:GO interfaces.

Fig. S2. The AFM images of PEG:GO/PEDOT:PSS (a) and 3 nm MoS_2 (b) films deposited on the underlayers.

Fig. S3. J-V curves of devices based on films prepared via the original process in our earlier work and the optimized process in this work.

Fig. S4. J-V curves of devices with different ILs in the dark.

Fig. S5. MoS_2 thickness-dependent device performances. Current density-voltage (J–V) (a) and EQE (b) characteristics of devices modified by MoS_2 with different thickness of 0, 2, 3 and 5 nm.

Fig. S6. AFM image (a) and section profiles (b) of PEG:GO films deposited on PEDOT:PSS.

Fig. S7. The aging test for devices modified without or with MoS_2 films. (a) The XRD spectrum of perovskite films in as-prepared devices shown in inserted figures. (b) The XRD spectrum of perovskite films in devices that were stored for 1 month in glove box shown in inserted figures.

Tab. S1. Different performances of devices based on films prepared via the original process and optimized in later work.

Device	Voc (V)	Jsc (mA/cm ²)	FF (%)	PCE (%)
Original	0.923	18.501	60.8	10.38
Optimized	0.962	21.743	67.6	14.15

Tab. S2. The parameters of ITO/PEDOT:PSS/MAPbI₃/PCBM/MoS₂/Ag devices with different thichness of the MoS₂ layer.

Thickness of MoS ₂	Voc (V)	J _{SC} (mA/cm ²)	FF (%)	PCE (%)
0 nm	0.962	21.743	67.6	14.15
2 nm	1.017	21.814	70.4	15.62
3 nm	1.062	22.423	71.0	16.89
5 nm	0.917	15.392	56.2	7.94

Tab. S3. EIS parameters for the electrode films shown in Figure 5 (a, b).

Electrode Film	$\mathbf{R}_{\mathrm{S}}\left(\Omega ight)$	$\mathbf{R}_{1}\left(\Omega ight)$
PEDOT:PSS film without GO:PEG	30	1660
PEDOT:PSS film with GO:PEG	20	2970
Ag film without MoS ₂	17	790
Ag film with MoS ₂	9	1390

Tab. S4. PL life times fitted by a bi-exponential decay model for the data in Figure 5 (c, d).

Electrode Film	τ_1 (ns)	τ ₂ (ns)
ITO/ PEDOT:PSS/MAPbI3	4.4	35.2
ITO/ PEDOT:PSS/GO:PEG/MAPbI3	1.8	15.2
MAPbI3/PCBM/MoS2/Ag	3.9	30.4
MAPbI ₃ /PCBM/Ag	1.0	12.2

Tab. S5. A comparison of performances obtained using halide perovskites $MAPbI_3$ in inverted planar heterojunction perovskite solar cells with different cathode metals reported in our work and others.

Cathode Metal	Work Function of Cathode Metal	Voc (V)	Jsc (mA∙cm ⁻²)	FF	PCE (%)	ETL	Perovskite	HTL	Reference
Ag	4.7	1.135	22.834	0.73	19.14	PCBM/MoS ₂	MAPbI ₃	PEDOT:PSS	Our
Al	4.3	1.132	22.850	0.73	18.88	PCBM/MoS ₂	MAPbI ₃	PEDOT:PSS	Work
Al	4.3	0.98	19.8	0.70	13.58	ICBA/C60/BCP	MAPbI ₃	PTAA	
Cu	4.6	1.03	19.8	0.73	14.88	ICBA/C60/BCP	MAPbI ₃	PTAA	[1]
Au	5.1	0.98	19.8	0.63	12.22	ICBA/C60/BCP	MAPbI ₃	PTAA	

References

(1) Y. Deng, Q. Dong, C. Bi, Y. Yuan, J. Huang, Adv. Energy Mater. 6 (2016) 1600372.