Supporting Information

Oxygen-deficient Anatase TiO₂@C Nanospindles with

Pseudocapacitive Contribution for Enhancing Lithium Storage

Xiaolan Deng,^a‡ Zengxi Wei,^a‡ Chunyu Cui,^a Quanhui Liu,^a Caiyun Wang^b and Jianmin Ma^{a,c,*}

^aSchool of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China ^bARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, New South Wales 2522, Australia ^cKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P.R. China

‡ X. Deng and Z. Wei contributed equally to this work.

*Corresponding author: Prof. Jianmin Ma

Email: nanoelechem@hnu.edu.cn

Fig. S1 (a-d) HR-TEM images of TiO_2 , H-TiO₂, $TiO_2@C$ and H-TiO₂@C nanospindles.

Fig. S2 (a-c) XPS spectra of Ti 2p of the $TiO_2@C$, H-TiO₂ and TiO_2 samples; (d-f) O 1s spectra; (g and h) C 1s spectra.

Fig. S3 SEM images of the samples obtained after different reaction times: (a) 1 h, (b) 3 h, (c) 6 h, (d) 8h, (e) 10h and (f) 12 h.

Fig. S4 The XRD patterns of the samples obtained at different reaction stages: (a)1 h; (b)3 h; (c)6 h and (c)12 h, respectively.

Fig. S5 SEM images of as-synthesized TiO_2 nanocrystals at (a) 100 °C, (b) 120 °C and (c) 140 °C for 12 h.

Fig. S6 XRD patterns of the products in different ratios of Li:Ti, they are 0:1, 2:1 and 6:1, respectively.

Fig. S7 SEM images the products in different ratios of Li:Ti, they are 0:1, 2:1 and 6:1, respectively.

Fig. S8 N_2 adsorption-desorption isotherm and pore size distribution of (a) H-TiO₂@C, (b) TiO₂@C and H-TiO₂.

Samples	BET surface area (m ² g ⁻¹)	BJH pore volume (cm ³ g ⁻¹)	Pore size (nm)
H-TiO ₂ @C	136.93	0.17	32.67
TiO ₂ @C	86.15	0.17	44.01
H-TiO ₂	51.90	0.19	75.98

Table. S1 BET surface area and the porosity of H-TiO₂@C, TiO₂@C and H-TiO₂ samples.

In Table S1, the BET surface area and pore size of H-TiO₂@C are 136.93 m² g⁻¹ and 33.67 nm, respectively, which are higher than the TiO₂@C sample (86.15 m² g⁻¹ and 44.01 nm) and H-TiO₂ sample (51.89 m² g⁻¹ and 75.98 nm).

٦

Fig. S9 Charge/discharge curves of (a) $TiO_2@C$, (b) $H-TiO_2$ and (c) TiO_2 electrodes at 0.1 A

g-1.

Fig. S10 SEM image of (a) H-TiO₂@C, (b) TiO₂@C, (c) H-TiO₂ and (d) TiO₂ electrodes after 150 cycles at 0.1 A g^{-1} .

Ref	Samples	Current density (A g ⁻¹)	Discharge capacity (mA h g ⁻¹)	Current density (A g ⁻¹ , 1C=335 mA h g ⁻¹)						
						Rat	e capacity	/ (mA h g ⁻¹)	
16	TiO ₂ @C	0.168	185.7(1st);145.8(200th)	0.16	8 0	0.336	0.84	1.68	0.84	
				141		116	88	55	75	
27	rGO/TiO ₂	0.1	320(1 st); 262 (100 th)	0.1	0.2	0.5	1	2	5	0.1
		0.5	205 (500 th)	262	243	212	183	151	102	262
32	H-TiO ₂	0.2	225.6 (200 th)	0.2 0.5		0.8	1.6		3.35	
				20	0 162			144	130	
52	TiO ₂ @C	0.1	485(1st); 286.5 (200th)	0.1		0.2	0.5	1	0.	1
				240) 205		148	95	275	
54	3D C@TiO2	0.067	351(1 st); 228 (120 th)	0.067	0.335	0.67	0.168	3.35	6.7	16.8
				309	226	202	169	139	100	47
55	TiO ₂ @GO	0.084	332(1 st);205(100 th)	0.084	0.168 (0.336 0.84	1.68	3.36	8.4	0.084
		3.36	108(1500 th)	~230	~210	~190 ~170	~150	~130	~100	~220
66	TiO ₂ /TiO ₂ (B)	0.336	264.9(1st);260.1(500th)	0.067	0.168	0.336	0.67	1.68	13.44	0.067
				~312	~287	~275	~270	~250	~181	~315
Our work	H-TiO ₂ @C	0.1	797(1 st); 500(2 nd);	0.1	0.168	0.34	0.68	1.68	0.1	
			310 (150 th)	•••	0.100					
		1	342(1st);126 (200th)	430	280	191	108	51	30	09

Table. S2 Electrochemical performance of TiO_2 -based anode for LIBs

Fig. S11 Kinetic analysis of TiO₂@C. a) CV curves at different sweep rates. b) $i (V)/v^{1/2}$ versus $v^{1/2}$ at various potentials during charge/discharge process from 0.2 mV s⁻¹ to 1 mV s⁻¹. c) Capacitive current contributions (red regions) to the charge storage at 1 mV s⁻¹. d) The contribution ratio of psedocapacitive and diffusion-controlled curent at different scan rates of TiO₂@C.

Fig. S12 Kinetic analysis of H-TiO₂ a) CV curves at different sweep rates. b) $i(V)/v^{1/2}$ versus $v^{1/2}$ at various potentials during charge/discharge process from 0.2 mV s⁻¹ to 1 mV s⁻¹. c) Capacitive current contributions (red regions) to the charge storage at 1 mV s⁻¹. d) The contribution ratio of psedocapacitive and diffusion-controlled curent at different scan rates of H-TiO₂.

Fig. S13 Kinetic analysis of TiO_2 , CV curves at different sweep rates.