Electronic Supplementary Information (ESI)

Catalytic nickel and nickel-copper alloy hollow-fiber membranes for remediation of organic pollutants by electrocatalysis

Authors:

Francois-Marie Allioux^{1*}, Oana David², Andrea Merenda¹, James Maina¹, Miren Etxeberria Benavides², Lingxue Kong¹, Alfredo Pacheco Tanaka², Ludovic F. Dumée^{1*}

Affiliations:

¹ Deakin University, Geelong, Institute for Frontier Materials, Victoria, 3216, Australia

² TECNALIA, Energy and Environment Division, Mikeletegi Pasealekua 2, 20009, San Sebastian-Donostia, Spain

Corresponding authors*

f.allioux@deakin.research.edu.au ; Ludovic.dumee@deakin.edu.au

Spinning conditions

Sample	Dope flow rate	Air gap	Bore flow rate	Bore composition
	(mL.h ⁻¹)	(cm)	(mL.h ⁻¹)	
Ni HF	300	1.5	150	Water
NiCu HF	300	1.5	150	Water

Table S1. Spinning conditions of the Ni and NiCu HFs.

Table S2. Size distribution of the Ni and NiCu metal powder.

Metal	Equivalent spherical diameter in DI			Equivalent spherical diameter in			
particles	water (µm)			IP (µm)			
	d0.1	d0.5	d0.9	d0.1	d0.5	d0.9	
Ni	7.4 ± 0.2	19.6 ± 0.2	36.6 ± 0.7	7.1 ± 0.1	18.9 ± 0.1	36.6 ± 0.2	
NiCu	12.5 ± 0.3	31.2 ± 0.5	56.3 ± 0.2	14.8 ± 0.3	32.6 ± 0.9	58.4 ± 0.8	

Table S3. Average absolute density and relative density of the metal powders determined versus average bulk density of Ni and NiCu Monel 400 alloy.

Metal powder	Average absolute density	Relative density
	(g.cm ⁻³)	(%)
Ni	5.71	35.86
NiCu	4.25	51.71

UV/Vis in-situ SA oxidation monitoring

Fig.S1 (a): UV/vis experimental set-up for the in-situ monitoring of SA electrochemical oxidation with possible electrode reactions, SA degradation pathway.¹ (b): UV/vis calibration curve of SA in DI water.

Fig. S2 Size measurement of (a): Ni powder and (b): NiCu powder in DI water and IP.

Fig. S3 Schematic representation of the dry-wet spinning set-up.

Fig. S4 Water fluxes as a function of the water pressure of (a): Ni HFs and (b): NiCu HFs.

XPS analysis

Fig. S5 XPS HR spectra of Ni HF at different heat treatment temperature

Chemical	Position	FWH	Ni 600	Ni 700	Ni 800	Ni 900	Ni 1000	Ni 1100	Ni 900-	Ni 1100-
State	(eV)	м	(%)	(%)	(%)	(%)	(%)	(%)	Used	Used
		(eV)							(%)	(%)
Ni (0)	852.2	1	3.58	14.44	16.06	17.99	6.88	11.7	0.95	0.28
NiO	853.6	1.2	0	12.26	11.3	7.27	12.47	15.51	2.51	5.02
Ni(OH)2	855.6	3	59.54	47.08	46.31	50.58	49.48	45.46	62.1	60.09
Ni sat	861.2	4	36.88	26.23	26.33	24.16	31.17	27.33	34.43	34.61
Ni(OH)2: NiO			n/a	3.84	4.1	6.96	3.96	2.93	24.74	11.97

 Table S4. Ni and Ni oxides species evaluated from the Ni 2p 3/2 HR spectra of Ni HF

Fig. S6 XPS HR spectra of Ni 2p of NiCu HF at different heat treatment temperature.

Fig. S7 XPS HR spectra of Cu 2p of NiCu HF at different heat treatment temperature.

Sample ID	Ni/Cu ratio
NiCu-700	2.3
NiCu-800	3.0
NiCu-900	0.7
NiCu-900 used	4.7
NiCu-1000	1.3
NiCu-1100	5.3
NiCu-1100 used	3.4

 Table S5 Variation of Ni/Cu ratio evaluated by XPS analysis across the series of different heat treatment.

Chemical	Position	FWHM	NiCu	NiCu	NiCu	NiCu	NiCu	NiCu	NiCu
State	(eV)	(eV)	700 (%)	800 (%)	900 (%)	1000 (%)	1100 (%)	900-	1100-
								Used (%)	Used (%)
Ni (0)	852.4	1	9.82	7.99	8.62	4.51	6.88	0.05	0.96
NiO	853.8	1.1	10.29	13.47	3.84	3.65	11.9	0	0.09
Ni(OH)2	855.8	3	54.66	47.41	55.27	57.56	51.46	59.93	61.9
Ni sat	861.1	4.3	25.23	31.12	32.27	34.28	29.76	40.02	37.05
Ni(OH)2:			5.31	3.51	14.39	15.76	4.32	n/a	n/a
NiO									

 Table S6 Ni and Ni oxides species evaluated from the Ni 2p 3/2 HR spectra of Ni HF

Chemic	Position	FWHM	Ni 700	Ni 800	Ni 900	Ni 1000	Ni 1100	Ni 900-	Ni 1100-
al State	(eV)	(eV)	(%)	(%)	(%)	(%)	(%)	Used (%)	Used (%)
Cu (0)	932.5	1.1	29.46	43.2	9.58	12.72	48.41	13.5	0
CuO	933.8	2.3	26.52	25.04	20.64	13.4	29.31	85.97	84.22
Cu(OH) 2	935.1	2.5	19.67	18.08	35.73	39.35	9.16	0.53	14.28
Cu sat	943.85	4.5	24.35	13.67	34.05	34.53	13.12	0	1.5
Cu(OH) 2:CuO			0.7417	0.72204	1.7311	2.93657	0.31252	0.00616	0.16956

 Table S7 Cu and Cu oxides evaluated from Cu 2p 3/2 spectra of NiCu HF

Fig. S8 XPS investigation of Cu LMM transition for NiCu HF at different heat treatment temperature

Fig. S9 SEM of the 900°C annealed NiCu HF sample post electrocatalysis. Mild oxidation of the surface of the particles is visible on the right-hand image with pittings smaller than 100 nm

Table S8. Weight concentrations	of the	elements	across	the Ni	i HF	samples	calculated
from the EDX elemental analysis.							

Samples	Ni wt%	C wt%	O wt%
Ni HF 600°C	81.3 ± 0.8	12.5 ± 0.9	1.6 ± 0.2
Ni HF 700°C	72.5 ± 0.4	25.0 ± 0.4	1.3 ± 0.1
Ni HF 800°C	81.5 ± 0.8	14.7 ± 0.8	
Ni HF 900°C	75.6 ± 0.2	20.5 ± 0.2	1.8 ± 0.1
Ni HF 1000°C	78.3 ± 0.2	18.7 ± 0.2	1.2 ± 0.1
Ni HF 1100°C	83.4 ± 0.2	15.4 ± 0.2	1.1 ± 0.1

Table *S9.* Weight concentrations of the elements across the NiCu HF samples calculated from the EDX elemental analysis.

Samples	Ni wt%	Cu wt%	C wt%	O wt%
NiCu HF 700°C	56.0 ± 0.3	32.5 ± 0.3	6.3 ± 0.3	1.2 ± 0.1
NiCu HF 800°C	56.3 ± 0.3	31.6 ± 0.3	8.4 ± 0.4	
NiCu HF 900°C	56.5 ± 0.4	28.3 ± 0.3	10.0 ± 0.4	1.6 ± 0.1
NiCu HF 1000°C	26.3 ± 0.3	28.4 ± 0.3	10.9 ± 0.6	
NiCu HF 1100°C	37.0 ± 0.3	47.7 ± 0.3	9.0 ± 0.4	